ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology  (4)
Collection
Publisher
Years
  • 1
    Publication Date: 2017-04-03
    Description: The project S1 was aimed at (a) collecting new data and to update the existing databases needed to quantify seismic hazard; (b) promoting new studies on specific fields of knowledge and less-explored areas of Italy; (c) testing new approaches to evaluate seismic potential; (d) bounding slip rate values to use within probabilistic hazard estimates; and (e) preparing the way towards a future seismic hazard map of Italy. It was designed with three scientific parts – nationwide basic data, rheology, and field studies – and implemented into four tasks: 1) earthquake geodesy and modeling, 2) seismological data and earthquake statistics, 3) earthquake geology, and 4) tsunamis. Although with many difficulties and some delay, described in the appropriate section, all the above objectives have generally been accomplished. New observations were collected through original fieldwork and more sophisticated analyses were performed on existing data. Datasets needed for the seismic hazard estimates were updated at various levels by reducing both epistemic and aleatory uncertainties. New studies were carried out on specific fields of knowledge, e.g. addressing the repeatability of geodetic and stress data measurements or the seismogenic behavior of misoriented faults. Studies on less-explored areas were stimulated, and faults, whose seismic potential was not previously accounted for, were mapped and/or parameterized in the Ionian and Adriatic Seas, in Calabria, Sicily and the Southwestern Alps. Independent approaches to evaluate the seismic potential were tested, and a large effort toward homogenization and verifiability was made. The substantial improvements of nationwide datasets and understanding of the tectonic processes in large areas of the country set the basis for a significantly better assessment of seismic hazard.
    Description: DPC, INGV, CNR
    Description: Unpublished
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: earthquakes ; seismic hazard ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We model a fault cross-cutting the brittle upper crust and the ductile lower crust. In the brittle layer the fault is assumed to have stick-slip behaviour, whereas the lower ductile crust is inferred to deform in a steady-state shear. Therefore, the brittle-ductile transition (BDT) separates two layers with different strain rate and structural style. This contrasting behaviour determines a stress gradient at the BDT that is eventually dissipated during the earthquake. During the interseismic period, along a normal fault there should form a dilated hinge at and above the BDT. Conversely, an over-compressed volume should rather develop above a thrust plane at the BDT. On a normal fault the earthquake is associated with the coseismic closure of the dilated fractures generated in the stretched hangingwall during the interseismic period. In addition to the shear stress overcoming the friction of the fault, the brittle fault moves when the weight of the hangingwall exceeds the strength of the dilated band above the BDT. On a thrust fault, the seismic event is instead associated with the sudden dilation of the previously over-compressed volume in the hangingwall above the BDT, a mechanism requiring much more energy because it acts against gravity. In both casess, the deeper the BDT, the larger the involved volume, and the bigger the related magnitude. We tested two scenarios with two examples from L’Aquila 2009 (Italy) and Chi-Chi 1999 (Taiwan) events. GPS data, energy dissipation and strain rate analysis support these contrasting evolutions. Our model also predicts, consistently with data, that the interseismic strain rate is lower along the fault segment more prone to seismic activation.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC) within the INGV-DPC 2007-2009 agreement (project S1), Sapienza University, CNR, Eurocores, TopoEurope.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: brittle-ductile transition ; thrust ; normal fault ; dilatancy ; seismic cycle ; L’Aquila Italy ; Chi-Chi Taiwan ; earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Accepted for publication in Tectonics. Copyright (2010) American Geophysical Union
    Description: The study of geodynamics relies on an understanding of the strength of the lithosphere. However, our knowledge of kilometer-scale rheology has generally been obtained from centimeter-sized laboratory samples or from microstructural studies of naturally deformed rocks. In this study, we present a method that allows rheological examination at a larger scale. Utilizing forward numerical modeling, we simulated lithospheric deformation as a function of heat flow and rheological parameters and computed several testable predictions including horizontal velocities, stress directions, and the tectonic regime. To select the best solutions, we compared the model predictions with experimental data. We applied this method in Italy and found that the rheology shows significant variations at small distances. The strength ranged from 0.60.2 TN/m within the Apennines belt to 216 TN/m in the external Adriatic thrust. These strength values correspond to an aseismic mantle in the upper plate and to a strong mantle within the Adriatic lithosphere, respectively. With respect to the internal thrust, we found that strike-slip or transpressive, but not compressive, earthquakes can occur along the deeper portion of the thrust. The differences in the lithospheric strength are greater than our estimated uncertainties and occur across the Adriatic subduction margin. Using the proposed method, the lithospheric strength can be also determined when information at depth is scarce but sufficient surface data are available.
    Description: DPC-INGV project S1 (2008-2010)
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Continental neotectonics ; Rheology and friction of fault zones ; Rheology: crust and lithosphere ; Mechanics, theory and modeling ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Researches. Copyright (2010) American Geophysical Union
    Description: Two critical items in the energetic budget of a seismic province are the strain rate, which is measured geodetically on the Earth’s surface, and the yearly number of earthquakes exceeding a given magnitude. Our study is based on one of the most complete and recent seismic catalogs of Italian earthquakes and on the strain rate map implied by a multi-year velocity solution for permanent GPS stations. For 36 homogeneous seismic zones, we used the appropriate Gutenberg Richter relation based on the seismicity catalog to estimate a seismic strain rate, which is the strain rate associated with the mechanical work due to a co-seismic displacement. The volume storing most of the elastic energy is associated with the long-term deformation of each seismic zone, and therefore, the seismic strain rate is inversely proportional to the static stress drop. The GPS-derived strain rate for each seismic zone limits the corresponding seismic strain rate, and an upper bound for the average stress drop is estimated. These results demonstrated that the implied regional static stress drop ranged from 0.1 to 5.7 MPa for catalog earthquakes in the moment magnitude range [4.5–7.3]. These results for stress drop are independent of the “a” and “b” regional parameters and heat flow but are very sensitive to the assumed maximum magnitude of a seismic province. The data do not rule out the hypothesis that the stress drop positively correlates with the time elapsed after the largest earthquake recorded in each seismic zone.
    Description: The research was supported by Project S1 2007-2009 of Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civile, Rome.
    Description: In press
    Description: 1.9. Rete GPS nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: earthquakes ; seismic hazard ; geodesy ; b-value ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...