ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-13
    Description: This study focuses on the interaction among deep volcanic/hydrothermal gases, groundwater and soil gases at Vulcano Island (Aeolian Archipelago, Italy). The chemical-physical parameters of the groundwater, the total dissolved inorganic carbon (TDIC) and the isotopic composition of the CO2 dissolved in groundwater are reported and discussed. Furthermore, a comparison between soil gases and groundwater indicates that groundwater and soil gases show the same qualitative information, giving a good overall picture of the main degassing zones of a volcanic system, whereas the soil gas discharge provides an evaluation of the mass released by the deep feeding system. This approach can be a useful tool both to characterize mixing and/or interaction processes among different sources and for a monitoring of degassing activity of a volcanic system.
    Description: Published
    Description: 116-119
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Soil CO2 flux ; Dissolved gases ; Isotope composition of CO2 ; Groundwaters ; Vulcano Island ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-01
    Description: Here we discussed the results of the first geochemical investigation of the fluids (groundwater and the associated gases) emerging in the southwest of Yazd Province. We carried out two surveys, one in July 2019 and the second in September 2019s, in the region of the Gariz aquifer (central Iran).Wefocused our attention to 1) the chemistry of thewater (major and minor constituents coupled to the stable isotopes of oxygen and hydrogen), 2) the chemical composition of dissolved gases in water together with 3) the isotopic composition of Helium (3He/4He) and 4) the dissolved carbon in water (δ13CTDIC). Hydrogen and oxygen isotope values of groundwater display a fairly narrow range and indicate that the waters are of meteoric origin. On the base of the major ions chemistry, the bulk of the water samples are classified as Ca-HCO3, Ca\\Cl and Na\\Cl types. The groundwater chemistry is mainly influenced by the interaction with CO2-rich fluids, leakage of chlorinated saline water into the alluvial aquifer, and silicate dissolution. High dissolved carbon contents, mainly as bicarbonate ion, reflect the noticeable interaction of the groundwater with CO2-rich fluids. CO2 is the dominant gaseous component in most samples and its amount is always greater with respect to a water in equilibrium with the atmosphere (Air Saturated Water, ASW). Such excess of CO2 contents (more than 730 cc/l STP) dissolved in groundwater also supports the presence of a deep source of CO2-rich gas. The computed δ13C(CO2) in equilibriumwith the groundwater highlight a mixing in different proportion between an inorganic deep sourced CO2 (13C-enriched) and organic CO2 (13C-depleted). We also used the helium isotopes as a tools to figure out the origin of helium in the aquifer (air vs. mantle, and crust). The collected samples show a contribution of mantle-derived He in the Gariz aquifer up to (~45%) and the crust suggesting that at regional scale the tectonic discontinuities had a connectionwith the mantle or magmatic intrusions migrated through the crust transporting mantle volatiles to shallowcrustal layers. However, we cannot infer the timing of this possible magmatism at depth in the complex tectonic evolution of the area.
    Description: Ministry of Science, Research and Technology of Iran
    Description: Published
    Description: 107324
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Zagros groundwater ; Dissolved gases ; δ13C of TDIC ; Mantle-derived He ; Collision zone ; 03.02. Hydrology ; 03. Hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-08
    Description: Graciosa Island is located in the Azores Archipelago, along the so-called Terceira Rift, NE boundary of the Azores Plateau. From the hydrochemical point of view, two types of Na-Cl groundwater systems were identified: a cold aquifer system emerging at springs and exploited through boreholes for public water supply with different degrees of mineralization, and a hydrothermal system with issuing temperatures around 45 ºC. Geothermometers applied to the thermal waters point to deep temperature around 167 ºC and to immature waters, not reaching complete equilibrium with the reservoir rock. The isotopic composition and geochemistry of the thermal waters indicate mixture groundwater - seawater in different percentages and ion-exchange mechanisms that will be able to: i) increase groundwater salinity, ii) strongly change the isotopic composition to more enriched values, with different degrees of mixing.
    Description: Published
    Description: 630-633
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: N/A or not JCR
    Keywords: Thermal waters ; Volcanic island ; seawater-groundwater mixture ; Azores (Portugal) ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-08
    Description: This study is focused on fluids characterization and circulations through the crust of the Irpinia region, an active seismic zone in Southern Italy, that has experienced several high-magnitude earthquakes, including a catastrophic one in 1980 (M = 6.9 Ms). Using isotopic geochemistry and the carbon‑helium system in free and dissolved volatiles in water, this study aims to explore the processes at depth that can alter pristine chemistry of these natural fluids. Gas-rock-water interactions and their impact on CO2 emissions and isotopic composition are evaluated using a multidisciplinary model that integrates geochemistry and regional geological data. By analyzing the He isotopic signature in the natural fluids, the release of mantle-derived He on a regional scale in Southern Italy is verified, along with significant emissions of deep-sourced CO2. The proposed model, supported by geological and geophysical constraints, is based on the interactions between gas, rock, and water within the crust and the degassing of deep-sourced CO2. Furthermore, this study reveals that the Total Dissolved Inorganic Carbon (TDIC) in cold waters results from mixing between a shallow and a deeper carbon endmember that is equilibrated with carbonate lithology. In addition, the geochemical signature of TDIC in thermal carbon-rich water is explained by supplementary secondary processes, including equilibrium fractionation between solid, gas, and aqueous phases, as well as sinks such as mineral precipitation and CO2 degassing. These findings have important implications for developing effective monitoring strategies for crustal fluids in different geological contexts and highlight the critical need to understand gas-water-rock interaction processes that control fluid chemistry at depths that can affect the assessment of the CO2 flux in atmosphere. Finally, this study highlights that the emissions of natural CO2 from the seismically active Irpinia area are up to 4.08·10+9 mol·y-1, which amounts is in the range of worldwide volcanic systems.
    Description: Published
    Description: 165367
    Description: OST3 Vicino alla faglia
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: CO(2) output; Carbon isotopes; Degassing; Earthquakes; Noble gases; Precipitation ; 04.04 Solid Earth ; 01.01. Atmosphere ; 03.01. General ; 03.02. Hydrology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: The carbon isotopic composition of dissolved C-bearing species is a powerful tool to discriminate the origin of carbon in thermal waters from volcanic and hydrothermal systems. However, the δ13C values of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) are often different with respect to the isotopic signature that characterizes the potential carbon primary sources, i.e. deep hydrothermal reservoirs, magmatic gases and organic activity. The most commonly invoked explanation for such isotopic values is related to mixing processes between deep and shallow end-members. Nevertheless, experimental and empirical investigations demonstrated that isotopic fractionation due to secondary processes acting on the uprising fluids from the hydrothermal reservoirs is able to reproduce the measured isotopic values. In this paper,we investigated the chemistry of thermalwaters, collected at Campi Flegrei and Vulcano Island (southern Italy),whose origin is related to interaction processesamongmagmatic gases, meteoric water, seawater and hosting rocks. A special focus was dedicated to the δ13C values of dissolved CO2 (δ13CCO2(aq)) and total dissolved inorganic carbon (δ13CTDIC). The δ13CCO2(aq) and δ13CTDIC values in the water samples fromboth these systems ranged from(i) those measured in fumarolic gases, likely directly related to the deep hydrothermal-magmatic reservoir, and (ii) those typically characterizing biogenic CO2, i.e. produced by microbially-driven degradation of organic matter. A simple mixingmodel of the two end-members, apparently explaining these intermediate carbon isotopic values, contrastswith the chemical composition of the dissolved gases. On the contrary, isotopic fractionation due to secondary processes, such as calcite precipitation, affecting hydrothermal fluids during their underground circulation, seems to exhaustively justify both the chemical and isotopic data. If not recognized, these processes, which frequently occur in volcanic and hydrothermal systems, may lead to an erroneous interpretation of the carbon source, causing an underestimation of the contribution of the hydrothermal/magmatic fluids to the dissolved carbon species. These results pose extreme caution in the interpretation of intermediate δ13CCO2(aq) and δ13CTDIC values for the assessment of the carbon budget of hydrothermal- volcanic systems.
    Description: Published
    Description: 46–57
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Thermal waters ; Carbon isotopes ; Dissolved CO2 ; TDIC ; Volcanic-hydrothermal systems ; Secondary fractionation processes ; 04.08. Volcanology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...