ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes  (4)
  • 1
    Publication Date: 2017-04-04
    Description: Hydrochemical (major and some minor constituents), stable isotope (dDH2O and d18OH2O; d13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg〉Na- SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, d18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/ water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and d13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from )10.0& and 2.8&, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios (d13CCO2 value from )3 to 0& vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/ or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.
    Description: Published
    Description: 781-807
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal waters, ; chemical and isotope composition, ; dissolved gases ; d13C ; Sicily. ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A simple method for determining the d13C of TDIC (Total Dissolved Inorganic Carbon) in natural waters was developed and tested. The proposed method is based on chemical and physical stripping of CO2 from water samples. The sampling apparatus consists of a glass bottle (ca 100 ml) totally filled with water sample in the field and sealed by gas-tight rubber/teflon plug. In the laboratory, we introduce 10 ml of pure Ar as host gas into the bottles and draw out an equal volume of water. About 0.5 ml of 37% extra-pure HCl is then injected into the bottle. Water pH decreases to values close to 1 and, therefore, the only carbon species present is CO2 both as dissolved and gaseous phase. Then the bottle is connected to a vacuum line to extract CO2 gas and to purify it by means of standard techniques for CO2 purification. In order to test this method, several sea water samples were prepared and analysed, as well as a series of standard solutions of Na2CO3 at known isotopic composition of carbon. The accuracy of these measurements was ± 0.2 %° vs V-PDB and their reproducibility was better than 0.2 %° vs V-PDB.
    Description: -National Group for Volcanology, Italy.
    Description: Published
    Description: 313-320
    Description: reserved
    Keywords: Carbon isotopes ; TDIC,CO2 ; HCO3 ; CO2- water interaction ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 433222 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The present work reports on the isotopic characterization of rainfall and groundwater at Mt. Vesuvius. Values of d18O, monthly measured on rain samples collected during the period 2002–2004 in a rain-gauge network composed of 10 stations, were compared with meteorological and DEM data. Air temperature, controlled by the local orographic structure, was identified as the main factor influencing rain isotopic composition. Another important role is played by orographic clouds, whose condensation over the top of Mt. Vesuvius is responsible for anomalously high d18O values recorded in rain samples from the summit area of the volcanic edifice. A spatial model of rain isotopic composition, based on a 3D distribution of temperature derived by a 1 9 1 km DEM, was implemented and used for calculating the theoretical isotopic signature of seepage, further compared with data measured in the groundwater monitoring network. The analysis evidenced the role of local meteoric recharge as the main source feeding Mt. Vesuvius aquifers. The unique exception is the Olivella drainage gallery, located on the north-eastern flank of the volcanic edifice, whose isotopic composition is slightly more positive than the one expected for its altitude, likely caused by both evaporation processes and mixing with condensed hydrothermal vapor.
    Description: Published
    Description: 2009-2018
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Groundwater ; Orographic cloud ; Oxygen isotopic composition ; Rain ; Vesuvius ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...