ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Gas and water samples were collected at CO2-rich wells in the plain of Florina (N. Greece). Chemical and isotopic composition of the analysed gases reveals their main crustal origin even if a small but significant contribution of mantle derived gases can be recognized. As a consequence of CO2 dissolution, HCO3- is always the main dissolved anion while cationic composition allows us to distinguish at least two main groups characterized by Na or Ca as dominant dissolved cations. The water-rock interaction is strongly enhanced by the dissolution of CO2 and the consequent lowering of pH. Such a process increases the mobility of some trace elements whose concentrations very often exceed UE drinking water limits. This study confirms that the Florina basin represents a good natural analogue of carbon storage systems and underscores the fact that possible deterioration of water quality due to CO2 leaks of the reservoirs must be carefully taken in account.
    Description: Published
    Description: 135-143
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: reserved
    Keywords: Groundwater ; Water quality ; carbon dioxide ; trace elements ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The isotopic composition of meteoric water inSicily,Italy was investigated from May 2004 until June 2006. Samples were sampled monthly from anetwork of50rain gauges.During the same period 580 groundwater samples were collected from springs and wells toobtain insight into the isotopic composi- tion ofthe water circulati nginthe main aquifers ofthe area.The mean weighted precipitation values were used to definethe weighted local meteoric water line for fivedifferent sectors ofSicily.The use of Geographical Information System tools,coupled with isotopic vertical gradients,allowed designing an isotopic contour map ofprecipitation inSicily.The definedmeteoric compositions were highly consis- tent with most ofthe groundwater samples ineach sector.However,insome areas fractionation pro- cesses occurring during and after rainfall slightly modify the isotopic composition ofthe groundwater. The obtained data set definesthe present day isotopic composition ofmeteoric water inthe central Med- iterranean area and provides baseline values for future climatic and/or isotope-based hydrology studies.
    Description: Published
    Description: 199-206
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry, meteoric water ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Acidification of seawater is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. In aquatic system CO2 gas dissolves, hydrates and dissociates to form weak carbonic acid, which is the main driver of natural weathering reactions [Drever, 1997]. The result of the CO2 increase is seawater acidification. Vulcano Island, the southernmost of Aeolian Islands, is located in the Southern Tyrrhenian Sea (Italy), approximately 18 miles off the NE coast of Sicily. The Baia di Levante can be considered a natural laboratory where almost all of the biogeochemical processes related to the ocean acidification can be studied. In this area many submarine vents release CO2. Four geochemical surveys of the Bay were carried out in April - September 2011 and May - June 2012. The main physic-chemical parameters (T, pH, Eh, electric conductivity) were measured at more than 70 sites and more than 40 samples for chemical analyses were collected at representative points. Major (Na, K, Mg, Ca, Cl, SO4) and some minor components (B, Sr, Fe) and trace elements (Mn, Mo, Al, U, Ce, Pb, Tm, Tb, Nd, Th) dissolved in water, the chemical composition of dissolved gases (He, H2, O2, N2, CH4 and CO2) and the isotopic composition of total dissolved inorganic carbon were determined in the laboratory. The bubbling CO2 produces a strong decrease in pH from the normal seawater value of 8.2 down to 5.5 (Figure 1). In the area close to the main degassing vents, characterized by very low pH, macroorganisms were absent. Acidification of sea water is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. At Baia di Levante, about 300 m from the main vents the seawater is only slightly acidic (pH 6.5 - 7.0) resembling the ocean water conditions in equilibrium with the high atmospheric CO2 concentrations expected in the near future. Therefore environments like this, naturally enriched in CO2, are good laboratories to study the consequences of ocean acidification on aquatic biota [Doney et al., 2009]. Furthermore acidification is tightly linked with the mobility and bio-availability of heavy metals [Millero et al., 2009] in sea water and volcanoes were always the favourite choice for human settlements; as a consequence economic anthropological activity, such as fishing, could be dangerous for human health, because of the presence toxic level of trace metals in the food chain due to the presence of the volcano’s. The present study could provide important information about the best environmental management of volcanic areas such as Vulcano Island
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: ocean acidification ; environmental impact of volcanic activity ; volcanic gases ; trace elements ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in seawater carbonate chemistry that is well suited to studies of the effects of long-term increases in CO2 levels. This shoreline lacks toxic compounds (such as H2S) and has a gradient in carbonate saturation states.
    Description: Published
    Description: 485–494
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: ocean acidification ; carbon capture and storage ; marine geochemistry ; carbonate saturation state ; volcanic vents ; carbon dioxide ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...