ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-09
    Description: Climate change negotiations aim to reduce net greenhouse-gas emissions by encouraging direct reductions of emissions and crediting countries for their terrestrial greenhouse-gas sinks. Ecosystem carbon dioxide uptake has offset nearly 10% of Europe’s fossil fuel emissions, but not all of this may be creditable under the rules of the Kyoto Protocol. Although this treaty recognizes the importance of methane and nitrous oxide emissions, scientific research has largely focused on carbon dioxide. Here we review recent estimates of European carbon dioxide, methane and nitrous oxide fluxes between 2000 and 2005, using both top-down estimates based on atmospheric observations and bottom-up estimates derived from ground-based measurements. Both methods yield similar fluxes of greenhouse gases, suggesting that methane emissions from feedstock and nitrous oxide emissions from arable agriculture are fully compensated for by the carbon dioxide sink provided by forests and grasslands. As a result, the balance for all greenhouse gases across Europe’s terrestrial biosphere is near neutral, despite carbon sequestration in forests and grasslands. The trend towards more intensive agriculture and logging is likely to make Europe’s land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority.
    Description: Published
    Description: 842-850
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: carbon budget ; carbon dioxide ; methane ; greenhouse gas emission ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-16
    Description: Petroleum seeps have historically been important drivers of global petroleum exploration. Still today they can serve as direct indicators of gas and/or oil subsurface accumulations. In particular the assessment of the origin of seeping gas is a key task for understanding, without drilling, the subsurface hydrocarbon potential, genesis and quality; e.g., the presence of shallow microbial gas, deeper thermogenic accumulations, the presence of oil and non-hydrocarbon undesirable gases (CO2, N2, H2S). Seeps are then indicators of tectonic discontinuities (faults) and fractured rocks; they can also represent geo-hazards and sources of greenhouse gas (methane) and photochemical pollutants (ethane and propane). A new global dataset of onshore gas and oil seeps (GLOGOS) is here presented. GLOGOS includes more than 1150 seeps from 84 countries (version August 2009), and it is continuously updated and expanded. The dataset includes geographical and gas-geochemical data (molecular and isotopic composition of the main gases). Many seeps are recently discovered or never reported in other databases. Seeps are catalogued by country and classified in three types: gas seeps, oil seeps and mud volcanoes. All seeps have a bibliographic or www reference. GLOGOS is a unique tool for hydrocarbon exploration, assessment of Total Petroleum Systems and geo- structural studies.
    Description: Published
    Description: Article #70071
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: N/A or not JCR
    Description: open
    Keywords: METHANE ; SEEPAGE ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Mud volcanoes represent the largest expression of natural methane release into the atmosphere; however, the gas flux has never been investigated in detail. Methane output from vents and diffuse soil degassing is herewith reported for the first time. Measurements were carried out at 5 mud volcano fields around Sicily (Italy). Each mud volcano is characterized by tens of vents and bubbling pools. In the quiescent phase, methane emission from single vents ranges between 0.01 and 6.8 kg/day. Diffuse soil leakage around the vents is in the order of 102–104 mg m 2 d 1. An exceptional flux of 106 mg m 2 d 1 was recorded close to an everlasting fire. Soil CH4 flux is positive even at large distances from the mud volcano fields suggesting a diffuse microseepage over wider areas. A total of at least 400 tons CH4 per year can be estimated over the area investigated alone ( 1.5 km2).
    Description: Published
    Description: 1215
    Description: partially_open
    Keywords: methane ; flux measurements ; Sicily ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 151114 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Studies performed since 2000 have demonstrated that geologic emissions of methane are an important global greenhouse-gas source (Etiope, 2004; Kvenvolden and Rogers, 2005; Etiope al, 2008). It is recognised that significant amounts of methane, produced within the Earth crust, released naturally into the atmosphere through faults and fractured rocks. Major emissions are related to hydrocarbon production in sedimentary basins (microbial and thermogenic methane), through continuous exhalation and eruptions from more than 1 200 onshore and offshore mud volcanoes, more than 10 000 onshore and shallow marine seeps and through diffuse soil microseepage. Specifically, six source categories must be considered: mud volcanoes, gas seeps (independent of mud volcanism), microseepage (diffuse exhalation from soil in petroleum basins), submarine seepage, geothermal (non-volcanic) manifestations and volcanoes. Global emission estimates range from 42 to 64 Tg y-1 (mean of 53 Tg y-1), almost 10 % of the total CH4 emission, representing the second most important natural methane source after wetlands. Geo-CH4 sources would also represent the missing source of fossil methane recognised in the recent re-evaluation the fossil methane budget in the atmosphere (about 30 %; Lassey et al,, 2007; Etiope et al, 2008), which implies a total fossil methane emission much higher than that due to fossil fuel industry. The global geo-CH4 emission estimates are of the same level as or higher than other sources or sinks considered in the Intergovernmental Panel on Climate Change (IPCC) tables, such as biomass burning, termites and soil uptake. Recent studies indicate that Earth’s degassing also accounts for at least 17 % and 10 % of total ethane and propane emissions (Etiope and Ciccioli, 2009).
    Description: European Environment Agency
    Description: Published
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: METHANE ; SEEPAGE ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  Etiope G., Caracausi A., Favara R., Italiano F., Baciu C. (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geoph. Res. Letters 29, 14340-14343.
    Publication Date: 2017-04-04
    Description: The paper ‘‘Methane emission from the mud volcanoes of Sicily (Italy)’’ by Etiope et al. [2002] represents the first report ever done on experimental CH4 output data from subaerial mud volcanoes (MV). A review of available CH4 flux data and detailed discussion about the global implications of mud volcanic CH4 emission has been made elsewhere [Etiope and Klusman, 2002; Morner and Etiope, 2002]. [2] The comment by Kopf [2003] contributes to open discussions and to make the readership aware on how important this subject is. In this reply we wish to clarify that precise data of CH4 flux from geologic sources are beginning to be available only now. It would be opportune that the MV-expert community could agree in using a common unit for the gas flux. We propose t y 1 and Mt y 1, and not metres cubed, consistently with the data reported for the methane sources/sinks budget by the IPCC. [3] Sicilian MVs, the first to be measured in detail, are considerably much smaller than the Azeri Ashgil MV, mentioned by Kopf [2003], and it is therefore obvious to expect a lower gas flux. Anyway the Dashgil mud volcano flux data are not based on exact measurements but only on visual estimates of the bubbles [Hovland et al., 1997]. In order to fully reply to Kopf [2003], hereafter we briefly discuss the problem of how to estimate the total number of MVs in the world and present new data from other European MVs, recently investigated. Finally, we outline the global importance of mud volcanic CH4 emission, as Kopf [2003] and recent literature is stressing.
    Description: Published
    Description: 1094
    Description: partially_open
    Keywords: methane ; mud volcanoes ; helium ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 192711 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon- free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of ‘‘old’’ methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 100–102 mgm 2 day 1, and localised flows and gas vents, on the order of 102 t y 1, both on land and on the seafloor. Mud volcanoes producing flows of up to 103 t y 1 represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.
    Description: Published
    Description: 777-789
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The ‘‘Santa Maria di Leuca" Cold-Water Coral (CWC) province (northern Ionian Sea) was investigated for the first time to detect eventual occurrence of methane anomalies as a possible indication of hydrocarbon seepage stimulating the coral growth. Most coral mounds have developed in correspondence with tectonic scarps and faults, orthogonal to the southern margin and trending NW-SE, which could be potential sites of gas escape. A visual and instrumental inspection was performed by using a new deep-sea probe equipped with video-cameras, sonar, CTD, methane sensors, and a water sampler. Eight areas were explored by 10 surveys, depths ranging from 380 to 1100 m, for a total of more than 26h of continuous video and instrumental recording. Sediments were also sampled by gravity corers and analysed in laboratory. The images allowed to assess distribution, abundance and geometry of the colonies, most of which are developed on morphological highs often characterised by tectonic scarps. All data indicate however the lack of a significant occurrence of methane, both in seawater and sediments. No direct or indirect expressions of gas seepage were recognised on the seabed. Weak methane anomalies were detected only in seawater at the base of some fault-linked scarps, where more reducing conditions and bacterial methanogenesis are possibly enhanced by less water circulation. The faults are not fluid-bearing as previously suggested by high-resolution geophysical signatures. The development of the coral colonies thus cannot be attributed to seeping fluids, but to a favourable physiographic position with exposure to nutrient-rich currents.
    Description: In press
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; Corals ; Seepage ; Marine geology ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Two sites (MS04 and MS06) from the Santa Maria di Leuca (SML) Coral Province were analyzed by a video and acoustic survey during the National Italian Project Apulian Plateau Bank Ecosystem Study (APLABES). Site MS04 (Atlantis Mound) is characterized by a sub-conical mound, 500 m wide and 25 m high, located at a water depth of about 650 m. Site MS06 (Yellow Chain)comprises several elongated reliefs (NNW–SSE-oriented), up to 25 m high and 500 m in maximum lateral extent, located at a depth of between 490 and 540 m. At both sites, two main mesohabitats (mound and intermound) containing several coral-bearing and-barren macrohabitats were observed in recorded videos and detected in side- scan sonographs. The coral-rich macrohabitats, characterized by densely packed colonies of the scleractinians Madrepora oculata and, secondarily, Lophelia pertusa (M/L), are typically restricted to the mound areas. The mud-dominated ones, almost devoid of M/L colonies, are more common within the intermound mesohabitat. However, on the most extensive mounds, both macrohabitat typologies exist. They are heterogeneously distributed on the mound surface, often showing a clear differentiation along two opposite flanks of the same topographic feature. M/L-rich macrohabitats are preferentially located on top and along the mound northeastern flank, showing a typical step-like distribution, probably reflecting the arrangement of hard substrate outcrops. Along this flank, fan-shaped Madrepora colonies and sponges are often oriented NNW–SSE, implying, together with other evidence, a primary southwestern current flow. The hard-bottom macrohabitats of the southwestern mound flank are generally restricted to sparse exposed, subvertical to overhanging scarps as well as to heterometric boulders located at the scarp base. Their fauna is mainly characterized by small-sized organisms (such as sponges and solitary scleractinians although m-sized boulders may locally host very large antipatharian colonies (Leiopathes glaberrima). The heterogeneous distribution of the observed benthic macrohabitats seems to be strictly related to the local topography, the main current flow (and consequently larvae/food supply per unit of time), and the substrate typology (hard-vs. soft-bottom).
    Description: In press
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Deep-water coral mound ; Habitat ; Mediterranean ; Madrepora ; Lophelia ; Visual survey ; Acoustic survey ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Petroleum seeps have historically been important drivers of global petroleum exploration. Still today they can serve as direct indicators of gas and/or oil subsurface accumulations. In particular the assessment of the origin of seeping gas is a key task for understanding, without drilling, the subsurface hydrocarbon potential, genesis and quality, e.g. the presence of shallow microbial gas, deeper thermogenic accumulations, the presence of oil and non-hydrocarbon undesirable gases (CO2, N2, H2S). Low quality, biodegraded petroleum can also be recognised, before drilling, through specific geochemical features of the seeping gas. Seeps are then indicators of tectonic discontinuities (faults) and fractured rocks; they can also represent geo-hazards and sources of greenhouse gas (methane) and photochemical pollutants (ethane and propane). A new global dataset of onshore gas and oil seeps (GLOGOS) is here presented. GLOGOS includes more than 1150 seeps from 84 countries (version August 2009) and it is continuously updated and expanded. The data-set includes geographical and gas-geochemical data (molecular and isotopic composition of the main gases). Many seeps are recently discovered or never reported in other data-bases. Seeps are catalogued by country and classified in three types: gas seeps, oil seeps and mud volcanoes. All seeps have a bibliographic or www reference. GLOGOS is a unique tool for hydrocarbon exploration, assessment of Total Petroleum Systems and geo-structural studies.
    Description: Published
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: N/A or not JCR
    Description: open
    Keywords: petroleum seeps ; natural gas ; data-set ; methane ; gas-geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...