ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-09
    Description: CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. The numerical modeling procedures of geochemical processes are one of the few approaches for investigating the short-long-term consequences of CO2 storage into a deep reservoir. We present the results of a new approach for the reconstruction of thermo-physical properties of an off-shore deep well (situated in the medium Tyrrhenian Sea, only 5 miles from the coast, in the frame of a distensive and relatively high heat flux regime as a whole,with good outcrops, on-shore, of its stratigraphy includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l). We used the well-log coupled with temperature profile and new mineralogical analyses of the outcrops geological formations, being the original core data lacking. This kind of procedure is new as a whole, and it is useful to create background petro-physical data, for reservoir engineering numerical simulations both of mass-transport and geochemical as well as geo-mechanical, in order to asses its general properties, without re-opening the well itself for industrial use, such as CO2 geological storage. The profile of thermal capacity and conductivity, as well as porosity and permeability resulted very well constrained and detailed for further numerical simulation uses. Porosity is a very important parameter for reservoir engineering, mainly for numerical simulations including geochemical modelling, being strongly necessary for CO2 geological storage feasibility studies, because it allows to compute: i) the reservoir storage capacity for each trapping mechanisms (some algorithms are discussed in the presentation) and ii) the water/rock ratio (one of the input parameter requested by the geochemical software codes). A common problem, working with closed wells with, available the well-log report only, is to obtain data on the thermo-physical properties of the rock. Usually the available well-log report the temperature profile measured during drilling, the mud-loss and some other information on water and gas phase presence. In this work we present a procedure that allow to estimate porosity and permeability of the rock formation from the well-log data joint with a rough mineralogical analyses of the corresponding geological formations outcrop with the use of a boundary condition such as shallow heat flow measurements; a similar approach were presented from some authors that dealt with similar problems e.g. Singh V.K., (2007). The analyses of the rock samples proceed by using i) petro-graphical analyses; ii) calcimetry with Dietrich-Fruhling apparatus in order to analyse the carbonate content of each sample; iii) XRD Rietveld analyses in order to quantify the major mineralogy of each sample and to apply the dolomite correction to the results of calcimetry determination. Rietveld quantification procedure were performed by using Maud v 2.2.; iv) SEM analyses have been accomplished later in details. Successively, hints about the subsequent geochemical modelling approach are presented. Chemical composition of the aquifer pore water has been has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 70 °C and 200 bar). Numerical simulations has been carried out by the PRHEEQC (V2.11) Software Package via corrections to the code default thermodynamic to obtain a more realistic modeling.
    Description: Published
    Description: La Habana, Cuba
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: geochemical modeling ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: In this study numerical simulations of reactive transport in an off-shore deep saline aquifer for the geological sequestration of carbon dioxide are presented and discussed. The main goals are to assess: i) the CO2 injection impact in the reservoir and ii) the cap-rock stability, both being strategic requisites for feasibility studies that are about to be started in Italy. The stratigraphic succession is characterized by a sedimentary succession: from Triassic anhydrites to Jurassic Tuscan calcareous units, up to Cretaceous calcarenites, belonging to the Liguride units, and Quaternary shallow marine sediments. Stratigraphic data from a deep well indicate that below an 1,800 m thick cap-rock, constituted by allochtonous marly calcarenites and clay marls, a regional deep saline aquifer is present. This aquifer, hosted in six Late Triassic to Early Jurassic formations, belonging to the Tuscan Nappe units, consists of porous limestone (mainly calcite) and marly limestone deposits at 1900-3100 m b.s.l. A common problem working with off-shore closed wells, where only the well-log information are available, is that to obtain reliable physico-chemical parameters (e.g. petrophysical and mineralogical) to be used for numerical simulations. Available site-specific data include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. Bulk and modal mineralogical composition were obtained after sampling each formation in contiguous on-shore zones. Mineralogy was determined by X-Ray diffraction analysis coupled with Rietfield refinement. The latter was performed using Maud v2.2. The surface reactive area of minerals was assumed as geometric area of a truncated sphere calculated on the basis of Scanning Electronic Microscopy analysis. Porosity and permeability were inferred by the well-log data along with the use of boundary conditions such as surficial measurements and temperature profiles. The chemical composition of the aquifer pore water is unknown. As a consequence, this was calculated by batch modeling, assuming thermodynamic equilibrium between minerals and a NaCl (0.45 M) equivalent brine at reservoir conditions (up to 118 °C and 300 bars). The reconstructed dataset represented the base of numerical simulations to evaluate the potential geochemical impact of CO2 storage and to quantify water-gas-rock reactions. Three dimensional simulations were performed by the TOUGHREACT code via the implementation to the source code and the correction of the chemical parameters at the theoretical CO2 injection pressure. A re-interpretation of the available seismic reflection data was carried out to: i) define the 3D geometry, and ii) evaluate the volume of the geological structure potentially suitable for CO2 storage. In particular the main surfaces where physicochemical modeling was applied, i.e. the top and the bottom of the cap-rock units and the spill point surface, to better define the 3D geometry of the potential injection reservoir, were reconstructed. Reactive transport simulations were conducted under multiphase advection, aqueous diffusion, gas phase participation in multiphase fluid flow and geochemical reaction in non-isothermal conditions. Feedbacks between flow and geochemical processes were taken into account to evaluate changes in porosity and permeability as kinetic reactions were proceeding. Twenty years of CO2 injection at the rate of 1.5 Mt/year were simulated, whereas water-gas-rock interactions between CO2-rich brines and minerals over a period of 100 years were performed. Preliminary results suggest that injected CO2 can safely be retained in the reservoir by mineral trapping and that the cap-rock can be considered as efficient barrier.
    Description: Published
    Description: Rimini (Italy)
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: reactive transport modeling ; CO2 storage ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-09
    Description: CO2 Capture & Storage in saline aquifers is presently one of the most promising technologies for reducing anthropogenic emissions of CO2. In these sites the short-longterm consequences of CO2 storage into a deep reservoir can be predicted by numerical modelling of geochemical processes. Unfortunately a common problem working with off-shore closed wells, where only the well-log information are available, is to obtain physico-chemical data (e.g. petrophysical and mineralogical) needed to reliable numerical simulations. Available site-specific data generally include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. In this study we present a methodological procedure that allows to estimate and integrate lacking information to geochemical modelling of deep reservoirs such as: i) bulk and modal mineralogical composition, ii) porosity and permeability of the rock obtained from heat flow measurements and temperature, iii) chemical composition of formation waters (at reservoir conditions) prior of CO2 injection starting from sampling of analogue outcropping rock formations. The data sets in this way reconstructed constitute the base of geochemical simulations applied on some deep-seated Italian carbonatic and sandy saline aquifers potentially suitable for geological CO2 storage. Numerical simulations of reactive transport has been performed by using the reactive transport code TOUGHREACT via pressure corrections to the default thermodynamic database to obtain a more realistic modelling. Preliminary results of geochemical trapping (solubility and mineral trapping) potentiality and cap-rock stability as strategic need for some feasibility studies near to be started in Italy are here presented and discussed.
    Description: Submitted
    Description: Davos, Svizzera
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: reactive transport modeling ; CO2 storage ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...