ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography  (5)
  • Copernicus Marine Environment Monitoring Service  (2)
  • 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2020-11-11
    Description: This document was written for the MyOcean Project
    Description: Published
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: reserved
    Keywords: Mediterranean Sea ; Forecasting System ; Calibration ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the framework of the Mediterranean Operational Oceanography Network (MOON, http://www.moon-oceanforecasting.eu) The Mediterranean Forecasting System (Pinardi et al., 2003) has started the design and development of services that include the routine production of environmental and climate indicators. A process of identifying user requirements has been started in collaboration with European Environment Agency and the indicators definition and implementation aim to take user requirements into account. The indicators are extensively used by EEA (EEA web page on indicators: http://themes.eea.europa.eu/indicators/). INGV has carried out an analysis on the possible improvements of existing indicators in use by EEA and on the development of new indicators based on Marine Core Services (MCS) products. The list of indicators includes: Temperature, Chlorophyll-a (from ocean colour), Ocean Currents and Transport, Salinity, Transparency, Sea Level, Sea Ice and Density. A critical analysis has been carried out to identify the relevance of the above-mentioned indicators for EU policies, their spatial and temporal coverage, their accuracy and their availability (Coppini et al., 2008). INGV in collaboration with CNR-ISAC are directly involved on the development of the indicators in the Mediterranean region and European Seas region the Temperature and Chlorophyll-a (Chl-a) products are the most suitable for an indicator development test phase. In particular the OO Chl-a product, deduced from satellite data, is able to contribute to the further development of the EEA Chl-a indicator on eutrohpication that is based on in-situ measurements (CSI023). For this indicator a development phase has been undertaken in 2008 and 2009 within the European Topic Center for Water (ETC-W) for EEA. The temperature indicators, developed with the support of MyOcean and Operational Oceanography community, consist of long time series (1870-Today) of SST anomaly able to describe ocean temperature increase due to climate change in the European Seas and on SST trends map of the last 25 years for the European Seas. These last two indicators have been included in the last 2008 EEA report on Impacts of Climate change in the European Seas (http://www.eea.europa.eu/publications/eea_report_2008_4). Moreover MFS re-analysis have been produced for the Mediterranean Sea and it consists of daily output of MFS-OPA hydrodinamic model (1/16 of degree horizontal resolution) that assimilates all available in situ and satellite observation for 1985 to 2007. This reanalysis product is used to detect temperature anomalies over the last 20 years in the coastal zone that could be related with environmental stresses. In addition to that we have also identified a Density indicator that appears relevant for the ecosystem health assessment in the coastal waters.
    Description: Published
    Description: Berlin, Germany
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ICT ; operational oceanography ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Oil slicks caused by oil tanker accidents compose a major source of hydrocarbon pollution for the marine and coastal environment and can jeopardize its functional integrity. However, the deliberate discharge of oil and oily residues associated with routine tanker operations (bilges residues, tank oil sediments) and from illegal activities, highlights a far-reaching source of pollution perhaps more important than the one caused by accidents (EEA, 2002). The Adriatic Sea with an annual oil transport of 70 MT (million tons) is probably highly affected by operational pollution. Estimates give about 15 000 mt (metric tons) of such residues deliberately discharged every year denoting a major hazard for the marine and coastal environment of Adriatic region (Bilardo et al, 2004)). Risk mapping appears as the most appropriate way to approach the management of oil pollution in marine areas and in order to assess the ecosystem health state. Modern risk mapping should, tackle the intrinsic variability of the marine environment and the lack of knowledge regarding the cause-effects relationships on vulnerability of resources, in other words should consider the inherent uncertainty of the system. Thus risk management requires products that are time-dependent and that allow the continuous assessment of the system space and time variability. Modern operational oceanography gives the appropriate time and space resolution for the ocean hydrodynamics (Pinardi et al., 2003) so that time dependent risk mapping can be developed.
    Description: Published
    Description: Marseille, France
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: open
    Keywords: hazard ; oil spill ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Mediterranean Forecasting System (MFS) is operationally working since year 2000 and it is continuously improved in the frame of international projects. The system is part of the Mediterranean Operational Oceanography Network-MOON and MFS is coordinated and operated by the Italian Group of Operational Oceanography (GNOO). The latest upgrades and integration to MFS has been undertaken in the EU-MERSEA and BOSS4GMES Projects. Since October 2005 ten days forecasts are produced daily as well as 15 days of analyses once a week. The daily forecast and weekly analysis data are available in real time to the users through a dedicated ftp service and every day a web bulletin is published on the web site (http://gnoo.bo.ingv.it/mfs). A continuous evaluation in near real time of the forecasts and analyses produced by MFS has been developed in order to continuously verify the system and to provide useful information to the users. The R&D is focused on different aspects of the system. A new basin scale ocean model nested with operational MERCATOR global model has been developed and run in real time operationally for a test period together with a new assimilation scheme based on the 3DVAR. This system is now under evaluation. Important activities have been carried out to: implement and test a Bayesian methodologies of Ensemble and Super-Ensemble for the Mediterranean sea; produce 20 years of re-analysis; re-formulate the air-sea fluxes bulk formulae; develop dedicated products to support particular request of end users such as: indicators, real time oil spill forecasting, search & rescue.
    Description: EUROGOOS and European Commission
    Description: Published
    Description: Exeter, UK
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: open
    Keywords: Mediterranean Sea ; Forecast ; validations ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: not available
    Description: European Environment Agency and European Topic Centre on Water
    Description: Published
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: open
    Keywords: Marine and coastal environment ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-30
    Description: INGV is responsible for the operational production of the physical component of the Mediterranean Sea Monitoring and Forecasting Centre (Med-MFC) of the Copernicus Marine Service Monitoring System (CMEMS). The system was implemented in 2000 by the INGV National Group of Operational oceanography (GNOO) and has been developed in years thanks to a number of European projects. The Med-MFC is a coupled hydrodynamic-wave model with data assimilation component with a resolution of 1/16°. The model solutions are corrected by the variational assimilation (based on a 3DVAR scheme) of Temperature and Salinity vertical profiles (from ARGO, CTD, XBT and Gliders observations) and along track satellite Sea Level Anomaly (SLA) observations. In order to meet the requirements for Copernicus Marine Service Phase I the increase of the horizontal (to 1/24°) and vertical resolution of the hydrodynamic component of Med-MFC has been planned. The major improvements expected from this development are the following: 1) to better resolve the mesoscale processes in the Mediterranean region where the Rossby radius of deformation is about 12-15 km (1/24° is about 4-5 km); 2) to resolve the tidal forcing at Gibraltar, entering from the Atlantic into the Mediterranean, known to provide about 30% amplitude of the tidal signal in the Mediterranean; 3) to better resolve vertical mixing processes.
    Description: Unpublished
    Description: Istituto Nazionale di Geofisica e Vulcanologia. Sede Centrale. Roma
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Keywords: Mediterranean Sea Monitoring and Forecasting Centre ; Copernicus Marine Environment Monitoring Service ; ocean numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-03
    Description: The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.
    Description: Published
    Description: Vienna
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Keywords: Mediterranean monitoring and forecasting operational system ; Copernicus Marine Environment Monitoring Service
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...