ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (1)
  • 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks  (1)
  • 1
    Publication Date: 2020-10-29
    Description: The bulk electrical conductivity of the phonotephritic lava from the 1944 eruption of Mt Vesuvius was measured using complex impedance spectroscopy in a multianvil apparatus at 1 GPa and temperatures up to 700 °C. Melting experiments prior to the electrical measurements were also performed on this sample in a piston cylinder apparatus in order to gauge how bulk conductivity varies as a function of its melt fraction. Unlike the behaviour found in basaltic rocks in which conductivity increases with increasing melt fraction, we observe a conductivity decrease of the order of a factor of ten for samples at 700 °C ranging in melt fraction from 32 vol.% to completely molten.We attribute this anomalous behaviour to the progressive loss of highly conductive leucite upon melting. The addition of potassium to the melt phase, however, does not result in an increase of the total alkali concentration due to the melting of other mineral components. We also present an empirical model to predict the electrical conductivity of fully molten silicate liquids as a function of temperature and chemical composition, based on conductivity data for natural silicate liquids found in the literature. The inclusion of compositional terms reduces the error by more than a factor of four with respect to a composition independent, temperature-only parameterization.
    Description: Published
    Description: 192-201
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Electrical conductivity ; silicate melts ; partial melting ; Mt. Vesuvius ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-09
    Description: Electrical conductivities of polycrystalline garnets ranging in chemical composition from almandine (Fe3Al2Si3O12) to pyrope (Mg3Al2Si3O12) were measured at 10 GPa and 19 GPa at temperatures ranging from 300 to 1700 °C using complex impedance spectroscopy in a multianvil device. Mössbauer spectroscopy of each sample was carried out both before and after the electrical measurements to characterize the oxidation state of Fe in the almandine bearing garnets. Similar to the behavior of other ferromagnesian silicates, the substitution of Fe for Mg along this compositional join dramatically increases electrical conductivity, but this compositional effect is reduced with increasing temperature. Conductivities increase with increasing total Fe content, as the average Fe2+-Fe3+ distance decreases. At 10 GPa, activation energies for conductivity vary smoothly with composition and increase rapidly toward the pyrope end-member composition, where it reaches a value of 2.5 eV. The results are consistent with an electrical conductivity mechanism involving small polaron mobility in the Fe-bearing garnets at 10 GPa. At 19 GPa, however, there is virtually no change in the activation energy as a function of Fe-Mg substitution for the pyrope-rich garnets. These higher pressure measurements reß ect a mechanism involving oxygen related point defects, as conductivities increase with pressure at constant T for each garnet, and the effect of pressure is greater for the more Mg-rich garnets. The data also allow for a more quantitative evaluation of the effect of chemical composition, speciÞ cally Fe-Mg substitution, on the electrical conductivity proÞ le of the mantle, using a recently developed laboratory- derived model. We apply the model using these data to a portion of the transition zone between 520 and 660 km, in which we vary the garnet composition from Py100 to Py85Alm15. Although only a minor effect on bulk mantle conductivity results, we conclude that the overall garnet composition may, however, be important in characterizing the magnitude of any EC discontinuity with respect to the above-lying mantle.
    Description: Published
    Description: 1371-1377
    Description: JCR Journal
    Description: reserved
    Keywords: Electrical conductivity ; pyrope-almandine ; high pressure ; cation substitution ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...