ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Mud volcanoes represent the largest expression of natural methane release into the atmosphere; however, the gas flux has never been investigated in detail. Methane output from vents and diffuse soil degassing is herewith reported for the first time. Measurements were carried out at 5 mud volcano fields around Sicily (Italy). Each mud volcano is characterized by tens of vents and bubbling pools. In the quiescent phase, methane emission from single vents ranges between 0.01 and 6.8 kg/day. Diffuse soil leakage around the vents is in the order of 102–104 mg m 2 d 1. An exceptional flux of 106 mg m 2 d 1 was recorded close to an everlasting fire. Soil CH4 flux is positive even at large distances from the mud volcano fields suggesting a diffuse microseepage over wider areas. A total of at least 400 tons CH4 per year can be estimated over the area investigated alone ( 1.5 km2).
    Description: Published
    Description: 1215
    Description: partially_open
    Keywords: methane ; flux measurements ; Sicily ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 151114 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  Etiope G., Caracausi A., Favara R., Italiano F., Baciu C. (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geoph. Res. Letters 29, 14340-14343.
    Publication Date: 2017-04-04
    Description: The paper ‘‘Methane emission from the mud volcanoes of Sicily (Italy)’’ by Etiope et al. [2002] represents the first report ever done on experimental CH4 output data from subaerial mud volcanoes (MV). A review of available CH4 flux data and detailed discussion about the global implications of mud volcanic CH4 emission has been made elsewhere [Etiope and Klusman, 2002; Morner and Etiope, 2002]. [2] The comment by Kopf [2003] contributes to open discussions and to make the readership aware on how important this subject is. In this reply we wish to clarify that precise data of CH4 flux from geologic sources are beginning to be available only now. It would be opportune that the MV-expert community could agree in using a common unit for the gas flux. We propose t y 1 and Mt y 1, and not metres cubed, consistently with the data reported for the methane sources/sinks budget by the IPCC. [3] Sicilian MVs, the first to be measured in detail, are considerably much smaller than the Azeri Ashgil MV, mentioned by Kopf [2003], and it is therefore obvious to expect a lower gas flux. Anyway the Dashgil mud volcano flux data are not based on exact measurements but only on visual estimates of the bubbles [Hovland et al., 1997]. In order to fully reply to Kopf [2003], hereafter we briefly discuss the problem of how to estimate the total number of MVs in the world and present new data from other European MVs, recently investigated. Finally, we outline the global importance of mud volcanic CH4 emission, as Kopf [2003] and recent literature is stressing.
    Description: Published
    Description: 1094
    Description: partially_open
    Keywords: methane ; mud volcanoes ; helium ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 192711 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The isotopic composition of the rainfall in northwestern Sicily (Italy, central Mediterranean) was investigated in the period February 2002 to March 2003. A rain gauge network was installed and sampled monthly. The monthly values of the D and 18O ratios showed a wide range that reflected seasonal climatic variations. Mean weighted values were used to define an isotopic model of precipitation. Temporal variations in deuterium excess were also investigated. Using mean volume weighted values, the Local Meteoric Water Line (LMWL) can be represented by the equation: dD = 4.7d18O 8.2 (r2 = 0.96). Deuterium excess (d = dD 8d18O) was found to be strongly related to orography. The coastline samples were characterized by mean weighted deuterium excess values close to 12.5%; samples from inland areas showed values of 16%, while samples taken from the main reliefs showed values close to 19%. In inland areas, isotopic exchange between raindrops and moisture could shift the deuterium excess values slightly. On the higher reliefs, the interaction between falling raindrops and orographic clouds could shift the deuterium excess values significantly. The low slope of the LMWL could be referred to the high deuterium excess values of the higher sites and is related to orographic precipitation rather than to evaporation processes during the fall of the raindrops. The results obtained suggest that local orographic features may significantly change the isotopic composition of precipitation.
    Description: Published
    Description: D19302
    Description: JCR Journal
    Description: reserved
    Keywords: Isotopic composition ; Mediterranean ; precipitations ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...