ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Mud volcanoes represent the largest expression of natural methane release into the atmosphere; however, the gas flux has never been investigated in detail. Methane output from vents and diffuse soil degassing is herewith reported for the first time. Measurements were carried out at 5 mud volcano fields around Sicily (Italy). Each mud volcano is characterized by tens of vents and bubbling pools. In the quiescent phase, methane emission from single vents ranges between 0.01 and 6.8 kg/day. Diffuse soil leakage around the vents is in the order of 102–104 mg m 2 d 1. An exceptional flux of 106 mg m 2 d 1 was recorded close to an everlasting fire. Soil CH4 flux is positive even at large distances from the mud volcano fields suggesting a diffuse microseepage over wider areas. A total of at least 400 tons CH4 per year can be estimated over the area investigated alone ( 1.5 km2).
    Description: Published
    Description: 1215
    Description: partially_open
    Keywords: methane ; flux measurements ; Sicily ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 151114 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A global database of gas composition and methane stable isotopes of 143 terrestrial mud volcanoes from 12 countries and 60 seeps independent from mud volcanism from eight countries, was compiled and examined in order to provide the first worldwide statistics on the origin of methane seeping at the earth’s surface. Sixteen seep data were coupled with their associated subsurface reservoirs. The surface seepage data indicate that at least 76% of the mud volcanoes release thermogenic gas, with only 4% biogenic and 20% with mixed character. The average (201 data) of methane concentration and methane carbon isotope ratios (δ to the power of 13 C1) of mud volcanoes are 90% v/v and -46.4‰, respectively. The other types of seeps, which are independent from mud volcanism, have an average δ to the power of 13 C1 value that is slightly higher (-42.9‰). Gases from mud volcanoes are generally lighter (more methane, less ethane and propane) than their associated reservoir gases, suggesting a molecular fractionation during advective fluid migration. Other types of seeps, especially "dry" seeps, maintain the reservoir C1/(C2 + C3) "Bernard" ratio. Mud volcanoes behave like a "natural refinery" and the origin of gas more isotopically enriched than -50% and with C1/(C2 + C3) 〉500 should be attributed to a thermogenic source, rather than partial oxidation of biogenic gas. Some data that appear biogenic in the "Bernard diagram" can be explained by molecular fractionation of mixed gas. Consequently, the "Bernard" parameter may be misleading when applied to mud volcanoes since it does not always reflect the original gas composition. The mechanisms of the molecular advective segregation should be studied quantitatively by specific models and experiments.
    Description: Published
    Description: 333-344
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Mud volcanoes ; Seeps ; Methane ; Isotopes ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  Etiope G., Caracausi A., Favara R., Italiano F., Baciu C. (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geoph. Res. Letters 29, 14340-14343.
    Publication Date: 2017-04-04
    Description: The paper ‘‘Methane emission from the mud volcanoes of Sicily (Italy)’’ by Etiope et al. [2002] represents the first report ever done on experimental CH4 output data from subaerial mud volcanoes (MV). A review of available CH4 flux data and detailed discussion about the global implications of mud volcanic CH4 emission has been made elsewhere [Etiope and Klusman, 2002; Morner and Etiope, 2002]. [2] The comment by Kopf [2003] contributes to open discussions and to make the readership aware on how important this subject is. In this reply we wish to clarify that precise data of CH4 flux from geologic sources are beginning to be available only now. It would be opportune that the MV-expert community could agree in using a common unit for the gas flux. We propose t y 1 and Mt y 1, and not metres cubed, consistently with the data reported for the methane sources/sinks budget by the IPCC. [3] Sicilian MVs, the first to be measured in detail, are considerably much smaller than the Azeri Ashgil MV, mentioned by Kopf [2003], and it is therefore obvious to expect a lower gas flux. Anyway the Dashgil mud volcano flux data are not based on exact measurements but only on visual estimates of the bubbles [Hovland et al., 1997]. In order to fully reply to Kopf [2003], hereafter we briefly discuss the problem of how to estimate the total number of MVs in the world and present new data from other European MVs, recently investigated. Finally, we outline the global importance of mud volcanic CH4 emission, as Kopf [2003] and recent literature is stressing.
    Description: Published
    Description: 1094
    Description: partially_open
    Keywords: methane ; mud volcanoes ; helium ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 192711 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-04
    Description: Mud volcanoes and microseepage are two important natural sources of atmospheric methane, controlled by neotectonics and seismicity. Petroleum and gas reservoirs are the deep sources, and faults and fractured rocks serve as main pathways of degassing to the atmosphere. Violent gas emissions or eruptions are generally related to seismic activity. The global emission of methane from onshore mud volcanoes has recently been improved thanks to new experimental data sets acquired in Europe and Azerbaijan. The global estimate of microseepage can be now improved on the basis of new flux data and a more precise assessment of the global area in which microseepage may occur. Despite the uncertainty of the various source strengths, the global geological methane flux is clearly comparable to or higher than other sources or sinks considered in the tables of the Intergovernmental Panel on Climate Change.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: methane ; lithosphere degassing ; mudvolcanoes ; greenhouse gas ; geodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 991883 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-16
    Description: A new estimate of global methane emission into the atmosphere from mud volcanoes (MVs) on land and shallow seafloor is presented. The estimate, considered a lower limit, is based on 1) new direct measurements of flux, including both venting of methane and diffuse microseepage around craters and vents, and 2) a classification of MV sizes in terms of area (km2) based on a compilation of data from 120 MVs. The methane flux to the atmosphere is conservatively estimated between 6 and 9 Mt y)1. This emission from MVs is 3–6% of the natural methane sources and is comparable with ocean and hydrate sources, officially considered in the atmospheric methane budget. The total geologic source, including MVs, seepage from seafloor, microseepage in hydrocarbon-prone areas and geothermal sources, would amount to 35–45 Mt y)1. The authors believe it is time to add this parameter in the Intergovernmental Panel on Climate Change official tables of atmospheric methane sources.
    Description: Published
    Description: 997-1002
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; Mud volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-16
    Description: The assessment of gas origin in mud volcanoes and related petroleum systems must consider postgenetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive б13 CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with б13 CCO2〉+5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its б13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the б13 CCO2 values within the same mud volcanoes, so that positive б13 CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of б13 CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive б13 CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.
    Description: Published
    Description: 1692-1703
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Mud volcanoes ; Methane ; Secondary methanogenesis ; Anaerobic biodegradation ; Isotopically enriched CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...