ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-16
    Description: In this study, Mg/Ca, Sr/Ca and Ba/Ca ratios in a Lateglacial to Holocene stalagmite (CC26) from Corchia Cave (central Italy) are compared with stable isotope data to define palaeohydrological changes. For most of the record, the trace element ratios show small absolute variability but similar patterns, which are also consistent with stable isotope variations. Higher trace element-to-calcium values are interpreted as responses to decreasing moisture, inducing changes in the residence time of percolation, producing prior calcite precipitation and/or variations in the hydrological routing. Statistically meaningful levels of covariability were determined using anomalies of Mg/Ca, d18O and d13C. Combining these three time series into a single ‘palaeomoisture-trend’ parameter, we highlight several events of reduced moisture (ca. 8.9–8.4, 6.2, 4.2, 3.1 and 2.0 ka), a humid period between ca. 7.9 and 8.3 ka and other shorter-term wet events at ca. 5.8, 5.3 and 3.7 ka. Most of these events can be correlated with climate changes inferred from other regional studies. For both extremities of the record (i.e. before ca. 12.4 ka and after ca. 0.5 ka) Mg/Ca and Sr/Ca are anti-correlated and show the greatest amplitude of values, a likely explanation for which involves aragonite and/or gypsum precipitation (the latter derived from pyrite oxidation) above the CC26 drip point.
    Description: Published
    Description: 381–392
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: central Italy; Corchia Cave; Holocene; speleothems; trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Crystal-rich lithic clasts occurring in volcanic deposits are key tools to understand processes of storage, cooling, and fractionation of magmas in pre-eruptive volcanic systems. These clasts, indeed, represent snapshots of the magma-chamber/host-rock interface before eruptions and provide information on crystallization, differentiation, and degrees of interaction between magma and wall-rocks. In this study, with the aim to shed light on magma-carbonate interaction and CO2 emission in volcanic areas, we focused on the petrology of cumulate and skarn rocks by using as case study a suite of mafic and calcite-bearing lithic clasts from the Colli Albani Volcanic District. By means of phase relations, bulk rock chemistry, phase compositions, and stable isotope data we have recognized different types of cumulates and skarns. Cumulates containing either clinopyroxene±olivine associated with Cr-bearing spinel or glass+phlogopite have been divided in primitive and differentiated, respectively. Primitive cumulates originate at the interface between a relatively primitive magma and carbonate-bearing rocks and show evidences of olivine instability (i.e. heteradcumulate texture) due to carbonate assimilation. Differentiated cumulates, characterized by Ca-rich olivines, phlogopite, and glass containing calcite, form from a differentiated magma in a system open to CaO-contamination. Skarns has been divided in exoskarns, characterized by xenomorphic texture and abundant calcite, and endoskarns, characterized by hypidiomorphic texture, Ca-Tschermak-rich mineral phases, and interstitial glass. Exoskarns formed by means of solid state reactions in a dolostone protolith whereas endoskarns crystallized at subliquidus temperature from a silicate melt that experienced exoskarns assimilation. Our study evidences that magma-carbonate interaction can not be considered a one step process exhausting just after the formation of skarn shells. Magma and carbonate rocks, when in contact, continuously interact leading to the formation of exoskarns, endoskarns, cumulates (primitive and differentiated ones), and differentiated melts. Finally, by means of oxygen and carbon isotope compositions of calcite in equilibrium with skarns, we demonstrate that carbonate assimilation represents a source of massive CO2 degassing mechanism due to the consumption of calcite and removing of CO2 during the decarbonation process.
    Description: Sapienza Universita' di Roma INGV-DPC [Project V 3.1, Colli Albani].
    Description: Published
    Description: 2307-2332
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: magma/carbonate interaction ; CO2 degassing ; c umulate and skarn ; Colli Albani ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...