ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-27
    Description: A retrieval of tropospheric volcanic ash from Mt Etna has been carried out, using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). The NASA-MODIS satellite instrument acquires images in the 0.4 to 14 μm spectral range with a spatial resolution of 1 km at nadir. The eruption which occurred on 24 November 2006 is considered as a test case in this work. In order to derive the ash plume optical thickness, the particle effective radius and the total mass, the Brightness Temperature Difference procedure has been applied to MODIS channels 31 (centered at 11 μm) and 32 (centered at 12 μm). Channel 5 (centered at 1.24 μm) has been used to refine the cloud discrimination, exploiting the distinct reflectivity of meteorological and volcanic clouds in the near infrared spectral range. The detection of volcanic ash pixels has been significantly improved by applying an atmospheric water vapor correction to MODIS data. This procedure doubles the number of pixels identified as containing volcanic ash compared to the original method. The retrieved mean ash optical thickness at 0.55 μm, mean particle effective radius and the total ash mass in the plume are 0.4, 3.5 μm and 3620 tons, respectively. A detailed sensitivity analysis has been carried out to investigate errors in the retrieval caused by the uncertainty in various parameters: surface temperature and emissivity, plume geometry (altitude and thickness), ash type and atmospheric water vapor. Results show that the largest contributions to retrieval errors are from uncertainty in surface parameters, aerosol type and atmospheric water vapor. The total tropospheric volcanic ash retrieval errors are estimated to be 30%, 30% and 40% for mean AOT, mean effective radius and total mass retrieval, respectively.
    Description: Published
    Description: 023550
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: reserved
    Keywords: volcanic ash ; Mt. Etna volcano ; MODIS ; sensitivity study ; MODTRAN radiative transfer model ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-04
    Description: Aerosol optical properties have been measured on the island of Lampedusa (35.5°N, 12.6°E) with sevenband multifilter rotating shadowband radiometers (MFRSRs) and a CE 318 Cimel sunphotometer (part of the AERONET network) since 1999. Four different MFRSRs have operated since 1999. The Cimel sunphotometer has been operational for a short period in 2000 and in 2003–2006 and 2010–present. Simultaneous determinations of the aerosol optical depth (AOD) from the two instruments were compared over a period of almost 4 years at several wavelengths between 415 and 870 nm. This is the first longterm comparison at a site strongly influenced by desert dust and marine aerosols and characterized by frequent cases of elevated AOD. The datasets show a good agreement, with MFRSR underestimating the Cimel AOD in cases with low Ångström exponent; the underestimate decreases for increasing wavelength and increases with AOD. This underestimate is attributed to the effect of aerosol forward scattering on the relatively wide field of view of the MFRSR. An empirical correction of the MFRSR data was implemented. After correction, the mean bias (MB) between MFRSR and Cimel simultaneous AOD determinations is always smaller than 0.004, and the root mean square difference is ≤0.031 at all wavelengths. The MB between MFRSR and Cimel monthly averages (for months with at least 20 days with AOD determinations) is 0.0052. Thus, by combining the MFRSR and Cimel observations, an integrated long-term series is obtained, covering the period 1999–present, with almost continuous measurements since early 2002. The long-term data show a small (nonstatistically significant) decreasing trend over the period 2002–2013, in agreement with independent observations in the Mediterranean. The integrated Lampedusa dataset will be used for aerosol climatological studies and for verification of satellite observations and model analyses.
    Description: Published
    Description: 2725-2737
    Description: 2A. Fisica dell'alta atmosfera
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Description: restricted
    Keywords: remote sensing, aerosol retrievals, sunphotometers, mfrsr, climate ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-09
    Description: Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and microwave volcanic ash retrievals obtained from the geostationary Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI), the polar-orbiting Aqua-MODIS and ground-based weather radar. The expected outcomes are improvements in satellite volcanic ash cloud retrieval (altitude, mass, aerosol optical depth and effective radius), the generation of new satellite products (ash concentration and particle number density in the thermal infrared) and better characterization of volcanic eruptions (plume altitude, total ash mass erupted and particle number density from thermal infrared to microwave). This approach is the core of the multi-platform volcanic ash cloud estimation procedure being developed within the European FP7-APhoRISM project. The Mt. Etna (Sicily, Italy) volcano lava fountaining event of 23 November 2013 was considered as a test case. The results of the integration show the presence of two volcanic cloud layers at different altitudes. The improvement of the volcanic ash cloud altitude leads to a mean difference between the SEVIRI ash mass estimations, before and after the integration, of about the 30%. Moreover, the percentage of the airborne “fine” ash retrieved from the satellite is estimated to be about 1%–2% of the total ash emitted during the eruption. Finally, all of the estimated parameters (volcanic ash cloud altitude, thickness and total mass) were also validated with ground-based visible camera measurements, HYSPLIT forward trajectories, Infrared Atmospheric Sounding Interferometer (IASI) satellite data and tephra deposits.
    Description: Published
    Description: 58
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...