ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure  (1)
  • Multilateration  (1)
Collection
Keywords
Years
  • 1
    ISSN: 1432-1394
    Keywords: Key words. Laser ranging ; Airborne ; Multilateration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. A wide-angle airborne laser ranging system (WA-ALRS) is developed at the Institut Géographique National (IGN), France, with the aim of providing a new geodesy technique devoted to large (100 km2) networks with a high density (1 km−2) of benchmarks. The main objective is to achieve a 1-mm accuracy in relative vertical coordinates from aircraft measurements lasting a few hours. This paper reviews the methodology and analyzes the first experimental data achieved from a specific ground-based experiment. The accuracy in relative coordinate estimates is studied with the help of numerical simulations. It is shown that strong accuracy limitations arise with a small laser beam divergence combined with short range measurements when relatively few simultaneous range data are produced. The accuracy is of a few cm in transverse coordinates and a few mm in radial coordinates. The results from ground-based experimental data are fairly compatible with these predictions. The use of a model for systematic errors in the vehicle trajectory is shown to be necessary to achieve such a high accuracy. This work yields the first complete validation of modelization and methodology of this technique. An accuracy better than 1 mm and a few mm in vertical and horizontal coordinates, respectively, is predicted for aircraft experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multiintrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms ofdust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.
    Description: Published
    Description: 4698-4711
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Saharan dust ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...