ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Messinian salinity crisis  (2)
  • NE Atlantic  (2)
  • Paleoceanographic events  (2)
  • 0050PG; 0066PG; 145-883; 145-887; 146-893A; 167-1019A; 202-1240; 202-1242A; 341-U1419; 35MF20120125, OISO_21, INDIEN SUD 2; 47396B; 50-37KL; 64-480; 90b; AII125-8-55; AII125-8-56; Akademik M.A. Lavrentiev; ALV-3887-1549-004-007; ALV-3887-1549-004-009; ALV-3887-1549-004-012; ALV-3890-1407-003-001; ALV-3891-1459-003-002; ALV-3891-1758-006-003; AMOCINT, IMAGES XVII; ANT-XI/4; ANT-XXIII/9; ANT-XXVI/2; Argentine Basin; ARK-II/5; ARK-X/2; Azores; B34-91; BC; Bering Sea; Binary Object; BO04-PC11; Box corer; Brazil Basin; Burdwood_Bank; CALYPSO; CALYPSO2; Calypso Corer; Calypso Corer II; Calypso square corer; Calypso Square Core System; Canarias Sea; Cape_Horn; Caribbean Sea; CASQ; CASQS; CD159; CD159-10; CD159-15; CD159-17; CD38-17P; Celtic Sea; Cenderawasih Bay; Central Pacific; CH84-14; Charles Darwin; CHAT_10k; CHAT_16k; CHAT-3K; CHAT-5K; Chatham Rise; COMPCORE; Composite Core; Conrad Rise; Core; CORE; Core1471; Core2088; Core21210009; Core2307; Core2631; Core2657; Core2706; Core2774; Core47396; Core654; Core660; Core936; Corner Rise; Denmark Strait; Drake Passage; DRILL; Drilling/drill rig; Eastern Equatorial Pacific; Eastern slope of Kurile Basin; East Pacific; Emperor Seamounts; EN06601; EN066-39GGC; Endeavor; Equatorial East Pacific; ESTASE1; EW0408; EW0408-26JC; EW0408-85JC; EW0408-87JC; Exp341; F2-92-P3; F8-90-G21; File content; Galapagos; Galápagos Islands; GC; GC_POI; GeoB1503-1; GeoB2104-3; GeoB7149-2; GeoB7162-6; GeoB7163-7; GeoB7167-6; GGC; GGC5; gh02-1030; Giant box corer; Giant gravity corer; Giant piston corer; GIK17940-1; GIK23243-2 PS05/431; GKG; Glomar Challenger; GPC; Gravity corer; Gravity corer (Kiel type); Gravity corer (POI); GS07-150-17/1GC-A; GS07-150-20/2A; Gulf of Alaska; Gulf of California; H209; H213; HH12-946MC; HU72-021-7; HU89038-8PC; IMAGES III - IPHIS; IMAGES IV-IPHIS III; IMAGES V; IMAGES VIII - MONA; IMAGES VII - WEPAMA; IMAGES XII - MARCO POLO; IMAGES XV - Pachiderme; Indian Ocean; INOPEX; Interim_Seamount; Japan Trench; Jean Charcot; JM-FI-19PC; Joides Resolution; JPC; JPC30; JT96-09; JT96-09PC; Jumbo Piston Core; KAL; KALMAR II; Kasten corer; KL; KN_USA; KN11002; KN159-5; Knorr; KNR073-04-003; KNR110-50; KNR110-66; KNR110-82a; KNR110-82GGC; KNR140; KNR140-01JPC; KNR140-02JPC; KNR140-12JPC; KNR140-2-12JPC; KNR140-2-22JPC; KNR140-22JPC; KNR140-2-30GGC; KNR140-2-51GGC; KNR140-26GGC; KNR140-30GGC; KNR140-37JPC; KNR140-39GGC; KNR140-43GGC; KNR140-50GGC; KNR140-51GGC; KNR140-56GGC; KNR140-66GGC; KNR159-5; KNR159-5-36GGC; KNR159-5-78GGC; KNR176-17GC; KNR178; KNR178-2GGC; KNR178-32JPC; KNR195-5-CDH23; KNR195-5-CDH26; KNR195-5-CDH41; KNR195-5-GGC43; KNR197-10; KNR197-10CDH42; KNR197-10-CDH42; KNR197-10-CDH46; KNR197-10-GGC17; KNR197-10-GGC36; KNR197-10-GGC5; KNR198-CDH36; KNR198-GGC15; KNR31GPC5; KNR733P; KNR734P; KNR736P; KOL; KOMEX; KOMEX II; KR02-15-PC06; Kronotsky Peninsula; KT89-18-P4; Lakshadweep Sea; Laurentian fan; Leg145; Leg146; Leg167; Leg202; Leg64; Le Suroît; LPAZ21P; LV27/GREGORY; LV27-2-4; LV29-114-3; LV29-2; M16/2; M23/2; Marion Dufresne (1972); Marion Dufresne (1995); Maurice Ewing; Mazatlan; MCSEIS; MD012378; MD01-2378; MD012386; MD01-2386; MD012416; MD01-2416; MD012420; MD01-2420; MD022489; MD02-2489; MD022519; MD02-2519; MD03-2697; MD03-2707; MD052896; MD05-2896; MD052904; MD05-2904; MD07-3076; MD07-3076Q; MD07-3088; MD08-3169; MD08-3180; MD09-3256; MD09-3256Q; MD09-3257; MD106; MD111; MD114; MD122; MD12-3396Cq; MD126; MD13; MD134; MD147; MD159; MD168; MD173; MD189; MD77-176; MD972106; MD97-2106; MD972120; MD97-2120; MD972121; MD97-2121; MD972138; MD97-2138; MD982165; MD98-2165; MD982181; MD98-2181; MD99-2334; ME0005A; ME0005A-24JC; ME0005A-43JC; Melville; Meteor (1986); ML1208-01PC; MONITOR MONSUN; MR01-K03; MR06-04_PC04A; MUC; Multichannel seismics; MultiCorer; MV99-GC38; MV99-MC17/GC32/PC10; MV99-MC19/GC31/PC08; NEMO; Nesmeyanov25-1-GGC15; Nesmeyanov25-1-GGC18; Nesmeyanov25-1-GGC20; Nesmeyanov25-1-GGC27; New_England_Seamounts; North Atlantic; North Greenland Sea; North Pacific/Gulf of California/BASIN; North Pacific Ocean; Northwest Atlantic; Norwegian Sea; OCE326-GGC14; OCE326-GGC26; OCE326-GGC5; off Chile; off Nova Scotia; OSIRIS III; Pacific Ocean; PALEOCINAT; PC; Philippine Sea; PICABIA; Piston corer; Piston corer (BGR type); Piston corer (Kiel type); PLDS-007G; PLDS-1; Pleiades; Polarstern; PS05; PS1243-2; PS2606-6; PS2644-2; PS30; PS30/144; PS31; PS31/160; PS69; PS69/907-2; PS69/912-3; PS69/912-4; PS75/059-2; PS75/100-4; PS75/104-1; PS75 BIPOMAC; PUCK; RAPiD-10-1P; RAPiD-15-4P; RAPiD-17-5P; RBDASS05; RC24; RC24-8GC; RC27; RC27-14; RC27-23; Remote operated vehicle; RETRO-2; RNDB-GGC15; RNDB-GGC5; RNDB-PC11; RNDB-PC13; Robert Conrad; ROV; RR0503-36JPC; RR0503-41JPC; RR0503-64JPC; RR0503-79JPC; RR0503-831C; RR0503-83GC; S67-FFC15; S794; S931; Sakhalin shelf and slope; Sars_Seamount; Scotia Sea; Sea of Okhotsk; SEDCO; Sediment corer; Shackleton_Fracture_Zone; SHAK03-6K; SHAK05-3K; SHAK06-4K; SHAK06-5K; SHAK10-10K; SHAK14-4G; Shirshov Ridge; SK129-CR2; SL; Smithsonian_48735.1; SO156/2; SO156/3; SO161/3; SO161/3_22; SO178; SO178-13-6; SO201/2; SO201-2-101; SO201-2-12KL; SO201-2-77; SO201-2-85; SO202/1; SO202/1_18-6; SO213/2; SO213/2_76-2; SO213/2_79-2; SO213/2_82-1; SO213/2_84-1; SO95; Sonne; SOPATRA; South Atlantic; South Atlantic Ocean; South China Sea; Southern Alaska Margin: Tectonics, Climate and Sedimentation; South of Iceland; South Pacific Ocean; South Tasman Rise; Southwest Pacific Ocean; SPOC; Station 6, MD189-3396; SU90-08; Thomas G. Thompson (1964); Thomas Washington; Timor Sea; TNO57-21; TR163-22; TR163-23; TR163-31; TT154-10; TTN13-18; TTXXX; U938; V34; V34-98; V35; V35-5; V35-6; Vema; Vigo; VINO19-4-GGC17; VINO19-4-GGC37; VM21-29; VM21-30; VM23-81; VM28-122; VM28-238; VNTR01; VNTR01-10GC; W8709A; W8709A-13; Wecoma
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 567-576 
    ISSN: 1437-3262
    Keywords: Ferromanganese crusts ; Phosphatization ; Paleoceanographic events ; NE Atlantic ; Mediterranean outflow water ; Messinian salinity crisis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Hydrogenetic ferromanganese crusts reflect the chemical conditions of the sewater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12 Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts.10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2–5 Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30–40 Ma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 567-576 
    ISSN: 0016-7835
    Keywords: Key words Ferromanganese crusts ; Phosphatization ; Paleoceanographic events ; NE Atlantic ; Mediterranean outflow water ; Messinian salinity crisis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12 Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2–5 Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30–40 Ma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...