ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-18
    Description: The antifungal defense of Drosophila is controlled by the spaetzle/Toll/cactus gene cassette. Here, a loss-of-function mutation in the gene encoding a blood serine protease inhibitor, Spn43Ac, was shown to lead to constitutive expression of the antifungal peptide drosomycin, and this effect was mediated by the spaetzle and Toll gene products. Spaetzle was cleaved by proteolytic enzymes to its active ligand form shortly after immune challenge, and cleaved Spaetzle was constitutively present in Spn43Ac-deficient flies. Hence, Spn43Ac negatively regulates the Toll signaling pathway, and Toll does not function as a pattern recognition receptor in the Drosophila host defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levashina, E A -- Langley, E -- Green, C -- Gubb, D -- Ashburner, M -- Hoffmann, J A -- Reichhart, J M -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR 9022 CNRS, Institut de Biologie Moleculaire et Cellulaire, 15 Rue Rene Descartes, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antifungal Agents/*metabolism ; *Antimicrobial Cationic Peptides ; Body Patterning ; Drosophila/embryology/genetics/*immunology ; *Drosophila Proteins ; Escherichia coli/genetics/immunology ; Genes, Insect ; Hemolymph/metabolism ; Insect Proteins/*biosynthesis/genetics/metabolism/*physiology ; Membrane Glycoproteins/genetics/*physiology ; Micrococcus luteus/immunology ; Molecular Sequence Data ; Mutagenesis ; Peptides/genetics/metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/genetics/metabolism ; Serine Proteinase Inhibitors/genetics/*metabolism ; Serpins/genetics/*metabolism ; Signal Transduction ; Toll-Like Receptors ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-05
    Description: We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christophides, George K -- Zdobnov, Evgeny -- Barillas-Mury, Carolina -- Birney, Ewan -- Blandin, Stephanie -- Blass, Claudia -- Brey, Paul T -- Collins, Frank H -- Danielli, Alberto -- Dimopoulos, George -- Hetru, Charles -- Hoa, Ngo T -- Hoffmann, Jules A -- Kanzok, Stefan M -- Letunic, Ivica -- Levashina, Elena A -- Loukeris, Thanasis G -- Lycett, Gareth -- Meister, Stephan -- Michel, Kristin -- Moita, Luis F -- Muller, Hans-Michael -- Osta, Mike A -- Paskewitz, Susan M -- Reichhart, Jean-Marc -- Rzhetsky, Andrey -- Troxler, Laurent -- Vernick, Kenneth D -- Vlachou, Dina -- Volz, Jennifer -- von Mering, Christian -- Xu, Jiannong -- Zheng, Liangbiao -- Bork, Peer -- Kafatos, Fotis C -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):159-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364793" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Anopheles/*genetics/*immunology/metabolism/microbiology/parasitology ; Apoptosis ; Bacteria/immunology ; Catechol Oxidase/metabolism ; Computational Biology ; Drosophila Proteins/chemistry/genetics/metabolism ; Drosophila melanogaster/genetics/immunology/metabolism ; Enzyme Precursors/metabolism ; Gene Expression Regulation ; *Genes, Insect ; Genome ; Immunity, Innate ; Insect Proteins/chemistry/genetics/metabolism ; Multigene Family ; Peptides/metabolism ; Phylogeny ; Plasmodium/immunology/physiology ; Protein Structure, Tertiary ; Selection, Genetic ; Serine Endopeptidases/metabolism ; Serpins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...