ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-09-01
    Description: Phenotypic heterogeneity in the repetitive portion of a human malaria circumsporozoite (CS) protein, a major target of candidate vaccines, has been found. Over 14% of clinical cases of uncomplicated Plasmodium vivax malaria at two sites in western Thailand produced sporozoites immunologically distinct from previously characterized examples of the species. Monoclonal antibodies to the CS protein of other P. vivax isolates and to other species of human and simian malarias did not bind to these nonreactive sporozoites, nor did antibodies from monkeys immunized with a candidate vaccine made from the repeat portion of a New World CS protein. The section of the CS protein gene between the conserved regions I and II of a nonreactive isolate contained a nonapeptide repeat, Ala-Asn-Gly-Ala-Gly-Asn-Gln-Pro-Gly, identical at only three amino acid positions with published nonapeptide sequences. This heterogeneity implies that a P. vivax vaccine based on the CS protein repeat of one isolate will not be universally protective.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, R -- Wirtz, R A -- Lanar, D E -- Sattabongkot, J -- Hall, T -- Waters, A P -- Prasittisuk, C -- New York, N.Y. -- Science. 1989 Sep 1;245(4921):973-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2672336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface/*genetics ; Base Sequence ; Gene Amplification ; *Genes ; Humans ; Malaria/parasitology ; Molecular Sequence Data ; Phenotype ; Plasmodium vivax/*genetics/growth & development ; *Protozoan Proteins ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Key Findings: 1. Human activities have contributed substantially to observed ocean-atmosphere variability in the Atlantic Ocean (medium confidence), and these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s (medium confidence). 2. Both theory and numerical modeling simulations generally indicate an increase in tropical cyclone (TC) intensity in a warmer world, and the models generally show an increase in the number of very intense TCs. For Atlantic and eastern North Pacific hurricanes and western North Pacific typhoons, increases are projected in precipitation rates (high confidence) and intensity (medium confidence). The frequency of the most intense of these storms is projected to increase in the Atlantic and western North Pacific (low confidence) and in the eastern North Pacific (medium confidence). 3. Tornado activity in the United States has become more variable, particularly over the 2000s, with a decrease in the number of days per year with tornadoes and an increase in the number of tornadoes on these days (medium confidence). Confidence in past trends for hail and severe thunderstorm winds, however, is low. Climate models consistently project environmental changes that would putatively support an increase in the frequency and intensity of severe thunderstorms (a category that combines tornadoes, hail, and winds), especially over regions that are currently prone to these hazards, but confidence in the details of this projected increase is low. 4. There has been a trend toward earlier snowmelt and a decrease in snowstorm frequency on the southern margins of climatologically snowy areas (medium confidence). Winter storm tracks have shifted northward since 1950 over the Northern Hemisphere (medium confidence). Projections of winter storm frequency and intensity over the United States vary from increasing to decreasing depending on region, but model agreement is poor and confidence is low. Potential linkages between the frequency and intensity of severe winter storms in the United States and accelerated warming in the Arctic have been postulated, but they are complex, and, to some extent, contested, and confidence in the connection is currently low. 5. The frequency and severity of landfalling "atmospheric rivers" on the U.S. West Coast (narrow streams of moisture that account for 30 percent to 40 percent of the typical snowpack and annual precipitation in the region and are associated with severe flooding events) will increase as a result of increasing evaporation and resulting higher atmospheric water vapor that occurs with increasing temperature. (Medium confidence)
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49609 , Climate Science Special Report: Fourth National Climate Assessment; I; 257-276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The Global Modeling Initiative (GMI) science team is developing a three dimensional chemistry and transport model (CTM) to be used in assessment of the atmospheric effects of aviation. Requirements are that this model be documented be validated against observations, use a realistic atmospheric circulation, and contain numerical transport and photochemical modules representing atmospheric processes. The model must also retain computational efficiency to be tractable to use for multiple scenarios and sensitivity studies. To meet these requirements, a facility model concept was developed in which the different components of the CTM are evaluated separately. The first use of the GMI model will be to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. The assessment calculations will depend strongly on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere are available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies general circulation model (GISS). Objective criteria were established by the GMI team to identify the data set which provides the best representation of the stratosphere. Simulations of gases with simple chemical control were chosen to test various aspects of model transport. The three meteorological data sets were evaluated and graded based on their ability to simulate these aspects of stratospheric measurements. This paper describes the criteria used in grading the meteorological fields. The meteorological data set which has the highest score and therefore was selected for GMI is CCM2. This type of objective model evaluation establishes a physical basis for interpretation of differences between models and observations. Further, the method provides a quantitative basis for defining model errors, for discriminating between different models, and for ready re-evaluation of improved models. These in turn will lead to a higher level of confidence in assessment calculations.
    Keywords: Meteorology and Climatology
    Type: GRIPS Workshop; Mar 22, 1999 - Mar 25, 1999; Reading; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN48987 , Climate Science Special Report: Fourth National Climate Assessment; I; 411-429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...