ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-04-12
    Description: Vascular smooth muscle cell (SMC) proliferation and migration are important events in the development of atherosclerosis. The low-density lipoprotein receptor-related protein (LRP1) mediates suppression of SMC migration induced by platelet-derived growth factor (PDGF). Here we show that LRP1 forms a complex with the PDGF receptor (PDGFR). Inactivation of LRP1 in vascular SMCs of mice causes PDGFR overexpression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis. The development of these abnormalities was reduced by treatment with Gleevec, an inhibitor of PDGF signaling. Thus, LRP1 has a pivotal role in protecting vascular wall integrity and preventing atherosclerosis by controlling PDGFR activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boucher, Philippe -- Gotthardt, Michael -- Li, Wei-Ping -- Anderson, Richard G W -- Herz, Joachim -- GM 52016/GM/NIGMS NIH HHS/ -- HL20948/HL/NHLBI NIH HHS/ -- HL63762/HL/NHLBI NIH HHS/ -- NS43408/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):329-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/metabolism/*pathology ; Arteriosclerosis/*pathology/physiopathology/*prevention & control ; Benzamides ; Cattle ; Cell Division ; Cell Line ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Elastin/analysis ; Enzyme Inhibitors/pharmacology ; Imatinib Mesylate ; Ligands ; Low Density Lipoprotein Receptor-Related ; Protein-1/genetics/metabolism/*physiology ; Mesenteric Arteries/cytology/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Smooth, Vascular/cytology/*metabolism/pathology ; Myocytes, Smooth Muscle/*metabolism/physiology ; Phosphorylation ; Piperazines/pharmacology ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Proto-Oncogene Proteins c-sis ; Pyrimidines/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-07
    Description: Translocation of the small GTP-binding protein Rac1 to the cell plasma membrane is essential for activating downstream effectors and requires integrin-mediated adhesion of cells to extracellular matrix. We report that active Rac1 binds preferentially to low-density, cholesterol-rich membranes, and specificity is determined at least in part by membrane lipids. Cell detachment triggered internalization of plasma membrane cholesterol and lipid raft markers. Preventing internalization maintained Rac1 membrane targeting and effector activation in nonadherent cells. Regulation of lipid rafts by integrin signals may regulate the location of membrane domains such as lipid rafts and thereby control domain-specific signaling events in anchorage-dependent cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉del Pozo, Miguel A -- Alderson, Nazilla B -- Kiosses, William B -- Chiang, Hui-Hsien -- Anderson, Richard G W -- Schwartz, Martin A -- GM52016/GM/NIGMS NIH HHS/ -- HL 20948/HL/NHLBI NIH HHS/ -- R01 GM47214/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. mdelpozo@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD29/metabolism ; Binding Sites ; Cell Adhesion ; Cell Line ; Cell Membrane/*metabolism ; Cells, Cultured ; Cholera Toxin/metabolism ; Cholesterol/metabolism ; G(M1) Ganglioside/metabolism ; Glycosylphosphatidylinositols/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Integrins/*metabolism ; Liposomes/metabolism ; Membrane Microdomains/*metabolism ; Mice ; NIH 3T3 Cells ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-06-08
    Description: The surface membrane of cells is studded with morphologically distinct regions, or domains, like microvilli, cell-cell junctions, and coated pits. Each of these domains is specialized for a particular function, such as nutrient absorption, cell-cell communication, and endocytosis. Lipid domains, which include caveolae and rafts, are one of the least understood membrane domains. These domains are high in cholesterol and sphingolipids, have a light buoyant density, and function in both endocytosis and cell signaling. A major mystery, however, is how resident molecules are targeted to lipid domains. Here, we propose that the molecular address for proteins targeted to lipid domains is a lipid shell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Richard G W -- Jacobson, Ken -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1821-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA. richard.anderson@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12052946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caveolae/chemistry/*metabolism/ultrastructure ; Cholesterol/chemistry/*metabolism ; Glycosylphosphatidylinositols/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Microdomains/chemistry/*metabolism/ultrastructure ; Membrane Proteins/chemistry/*metabolism ; Protein Binding ; *Protein Transport ; Sphingolipids/chemistry/*metabolism ; Static Electricity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...