ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-09-04
    Description: Mitogen-activated protein (MAP) kinases are 42- and 44-kD serine-threonine protein kinases that are activated by tyrosine and threonine phosphorylation in cells stimulated with mitogens and growth factors. MAP kinase and the protein kinase that activates it (MAP kinase kinase) were constitutively activated in NIH 3T3 cells infected with viruses containing either of two oncogenic forms (p35EC12, p3722W) of the c-Raf-1 protein kinase. The v-Raf proteins purified from cells infected with EC12 or 22W viruses activated MAP kinase kinase from skeletal muscle in vitro. Furthermore, a bacterially expressed v-Raf fusion protein (glutathione S-transferase-p3722W) also activated MAP kinase kinase in vitro. These findings suggest that one function of c-Raf-1 in mitogenic signaling is to phosphorylate and activate MAP kinase kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dent, P -- Haser, W -- Haystead, T A -- Vincent, L A -- Roberts, T M -- Sturgill, T W -- CA50661/CA/NCI NIH HHS/ -- DK41077/DK/NIDDK NIH HHS/ -- HD24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Virginia, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1326789" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line ; Cell Line, Transformed ; Enzyme Activation/drug effects ; Immunosorbent Techniques ; Mice ; Mitogen-Activated Protein Kinase Kinases ; Muscles/enzymology ; Oncogene Proteins v-raf ; Phosphorylation ; Protein Kinases/*metabolism ; Proto-Oncogene Proteins/pharmacology ; Proto-Oncogene Proteins c-raf ; Recombinant Fusion Proteins/pharmacology ; Retroviridae Proteins, Oncogenic/genetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-10-28
    Description: PHAS-I is a heat-stable protein (relative molecular mass approximately 12,400) found in many tissues. It is rapidly phosphorylated in rat adipocytes incubated with insulin or growth factors. Nonphosphorylated PHAS-I bound to initiation factor 4E (eIF-4E) and inhibited protein synthesis. Serine-64 in PHAS-I was rapidly phosphorylated by mitogen-activated (MAP) kinase, the major insulin-stimulated PHAS-I kinase in adipocyte extracts. Results obtained with antibodies, immobilized PHAS-I, and a messenger RNA cap affinity resin indicated that PHAS-I did not bind eIF-4E when serine-64 was phosphorylated. Thus, PHAS-I may be a key mediator of the stimulation of protein synthesis by the diverse group of agents and stimuli that activate MAP kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, T A -- Kong, X -- Haystead, T A -- Pause, A -- Belsham, G -- Sonenberg, N -- Lawrence, J C Jr -- AR41180/AR/NIAMS NIH HHS/ -- DK28312/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939721" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipocytes/metabolism ; Animals ; *Carrier Proteins ; Insulin/*pharmacology ; Mice ; Mitogen-Activated Protein Kinase 1 ; Peptide Initiation Factors/isolation & purification/*metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; *Protein Biosynthesis ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Serine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-04-07
    Description: Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulugu, Sashidhar -- Bai, Wenli -- Fridy, Peter C -- Bastidas, Robert J -- Otto, James C -- Dollins, D Eric -- Haystead, Timothy A -- Ribeiro, Anthony A -- York, John D -- 2-P30-CA14236-3/CA/NCI NIH HHS/ -- P30-CA-14236/CA/NCI NIH HHS/ -- R01-HL-55672/HL/NHLBI NIH HHS/ -- R33-DK-070272/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412958" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 3/metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Chromatography, High Pressure Liquid ; Conserved Sequence ; Cytoskeletal Proteins/chemistry/genetics/isolation & purification/*metabolism ; Humans ; Inositol Phosphates/metabolism ; Molecular Sequence Data ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/chemistry/genetics/isolation & ; purification/*metabolism ; Phytic Acid/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/isolation & purification/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/chemistry/genetics/isolation & ; purification/metabolism ; Schizosaccharomyces/cytology/*enzymology/genetics/growth & development ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism ; *Sequence Alignment ; Substrate Specificity ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...