ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-16
    Description: Rho is the essential RNA helicase that sets the borders between transcription units and adjusts transcriptional yield to translational needs in bacteria. Although Rho was the first termination factor to be discovered, the actual mechanism by which it reaches and disrupts the elongation complex (EC) is unknown. Here we show that the termination-committed Rho molecule associates with RNA polymerase (RNAP) throughout the transcription cycle; that is, it does not require the nascent transcript for initial binding. Moreover, the formation of the RNAP-Rho complex is crucial for termination. We show further that Rho-dependent termination is a two-step process that involves rapid EC inactivation (trap) and a relatively slow dissociation. Inactivation is the critical rate-limiting step that establishes the position of the termination site. The trap mechanism depends on the allosterically induced rearrangement of the RNAP catalytic centre by means of the evolutionarily conserved mobile trigger-loop domain, which is also required for EC dissociation. The key structural and functional similarities, which we found between Rho-dependent and intrinsic (Rho-independent) termination pathways, argue that the allosteric mechanism of termination is general and likely to be preserved for all cellular RNAPs throughout evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epshtein, Vitaly -- Dutta, Dipak -- Wade, Joseph -- Nudler, Evgeny -- R01 GM058750/GM/NIGMS NIH HHS/ -- R01 GM058750-12/GM/NIGMS NIH HHS/ -- R01 GM072814/GM/NIGMS NIH HHS/ -- R01GM58750/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 14;463(7278):245-9. doi: 10.1038/nature08669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075920" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Binding Sites ; Biocatalysis ; Catalytic Domain ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Dicarboxylic Acids/pharmacology ; Escherichia coli/enzymology ; Kinetics ; Mutant Proteins/genetics/metabolism ; Mutation/genetics ; Organophosphorus Compounds/pharmacology ; Protein Binding ; Rho Factor/*metabolism ; Templates, Genetic ; Transcription, Genetic/drug effects/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-06
    Description: Transcription elongation is responsible for rapid synthesis of RNA chains of thousands of nucleotides in vivo. In contrast, a single round of transcription performed in vitro is frequently interrupted by pauses and arrests that drastically reduce the elongation rate and the yield of the full-length transcript. Here we demonstrate that most transcriptional delays disappear if more than one RNA polymerase (RNAP) molecule initiates from the same promoter. Anti-arrest and anti-pause effects of trailing RNAP are due to forward translocation of leading (backtracked) complexes. Such cooperation between RNAP molecules links the rate of elongation to the rate of initiation and explains why elongation is still fast and processive in vivo even without anti-arrest factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epshtein, Vitaly -- Nudler, Evgeny -- GM58750/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):801-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730602" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Catalytic Domain ; DNA-Directed RNA Polymerases/*metabolism ; Escherichia coli/enzymology/*genetics ; Hydroxymercuribenzoates/pharmacology ; Isopropyl Thiogalactoside/pharmacology ; Models, Genetic ; Nucleotides/metabolism ; *Promoter Regions, Genetic ; Rifampin/pharmacology ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-10
    Description: UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epshtein, Vitaly -- Kamarthapu, Venu -- McGary, Katelyn -- Svetlov, Vladimir -- Ueberheide, Beatrix -- Proshkin, Sergey -- Mironov, Alexander -- Nudler, Evgeny -- R01 GM058750/GM/NIGMS NIH HHS/ -- T32 GM088118/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 16;505(7483):372-7. doi: 10.1038/nature12928. Epub 2014 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2]. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA [3]. ; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA. ; State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia. ; 1] State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia [2] Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402227" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/chemistry/metabolism ; DNA Damage ; DNA Helicases/*metabolism ; *DNA Repair ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/enzymology/genetics ; Escherichia coli Proteins/*metabolism ; Models, Molecular ; Molecular Sequence Data ; *Movement ; Peptide Elongation Factors/metabolism ; Protein Binding ; Transcription Factors/metabolism ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...