ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-03-14
    Description: NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irani, K -- Xia, Y -- Zweier, J L -- Sollott, S J -- Der, C J -- Fearon, E R -- Sundaresan, M -- Finkel, T -- Goldschmidt-Clermont, P J -- HL52315/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054359" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Acetylcysteine/pharmacology ; Animals ; Antioxidants/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/biosynthesis ; Electron Spin Resonance Spectroscopy ; GTP-Binding Proteins/metabolism ; *Genes, ras ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Oxidation-Reduction ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Reactive Oxygen Species/*metabolism ; Signal Transduction ; Superoxides/*metabolism ; Transfection ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-10-13
    Description: Stimulation of rat vascular smooth muscle cells (VSMCs) by platelet-derived growth factor (PDGF) transiently increased the intracellular concentration of hydrogen peroxide (H2O2). This increase could be blunted by increasing the intracellular concentration of the scavenging enzyme catalase or by the chemical antioxidant N-acetylcysteine. The response of VSMCs to PDGF, which includes tyrosine phosphorylation, mitogen-activated protein kinase stimulation, DNA synthesis, and chemotaxis, was inhibited when the growth factor-stimulated rise in H2O2 concentration was blocked. These results suggest that H2O2 may act as a signal-transducing molecule, and they suggest a potential mechanism for the cardioprotective effects of antioxidants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sundaresan, M -- Yu, Z X -- Ferrans, V J -- Irani, K -- Finkel, T -- New York, N.Y. -- Science. 1995 Oct 13;270(5234):296-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1650, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569979" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; Adenoviridae/genetics/physiology ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Catalase/metabolism ; Cell Line ; Cells, Cultured ; Chemotaxis/drug effects ; Endopeptidase K ; Free Radical Scavengers/pharmacology ; Humans ; Hydrogen Peroxide/*metabolism ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Muscle, Smooth, Vascular/cytology/drug effects/*metabolism/virology ; Phosphorylation ; Phosphotyrosine/metabolism ; Platelet-Derived Growth Factor/*pharmacology ; Protein-Tyrosine Kinases/metabolism ; Rats ; Serine Endopeptidases/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...