ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-10
    Description: We describe a sensitive metabolite array for genome sequence-independent functional analysis of metabolic phenotypes and networks, the reactomes, of cell populations and communities. The array includes 1676 dye-linked substrate compounds collectively representing central metabolic pathways of all forms of life. Application of cell extracts to the array leads to specific binding of enzymes to cognate substrates, transformation to products, and concomitant activation of the dye signals. Proof of principle was shown by reconstruction of the metabolic maps of model bacteria. Utility of the array for unsequenced organisms was demonstrated by reconstruction of the global metabolisms of three microbial communities derived from acidic volcanic pool, deep-sea brine lake, and hydrocarbon-polluted seawater. Enzymes of interest are captured on nanoparticles coated with cognate metabolites, sequenced, and their functions unequivocally established.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beloqui, Ana -- Guazzaroni, Maria-Eugenia -- Pazos, Florencio -- Vieites, Jose M -- Godoy, Marta -- Golyshina, Olga V -- Chernikova, Tatyana N -- Waliczek, Agnes -- Silva-Rocha, Rafael -- Al-Ramahi, Yamal -- La Cono, Violetta -- Mendez, Carmen -- Salas, Jose A -- Solano, Roberto -- Yakimov, Michail M -- Timmis, Kenneth N -- Golyshin, Peter N -- Ferrer, Manuel -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):252-7. doi: 10.1126/science.1174094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CSIC, Institute of Catalysis, 28049 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815770" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/genetics/metabolism ; Bacteria/genetics/*metabolism ; Bacterial Proteins/metabolism ; Computational Biology ; Ecosystem ; Enzymes/*metabolism ; Enzymes, Immobilized ; Genome, Archaeal ; *Genome, Bacterial ; Hot Springs/microbiology ; *Metabolic Networks and Pathways ; *Metabolome ; Metabolomics/*methods ; Microarray Analysis/*methods ; Nanoparticles ; Pseudomonas putida/genetics/metabolism ; Seawater/microbiology ; Streptomyces coelicolor/genetics/metabolism ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Oxygenases ; Ketoreductases ; Acyl CoA ligase ; Loading enzyme ; Polyketides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mithramycin is an aromatic antitumour polyketide synthesized by Streptomyces argillaceus. Two chromosomal regions located upstream and downstream of the locus for the mithramycin type II polyketide synthase were cloned and sequenced. Analysis of the sequence revealed the presence of eight genes encoding three oxygenases (mtmOI, mtmOII and mtmOIII), three reductases (mtmTI, mtmTII and mtmTIII), a cyclase (mtmY) and an acyl CoA ligase (mtmL). The three oxygenase genes were each inactivated by gene replacement. Inactivation of one of them (mtmOII) generated a non-producing mutant, while inactivation of the other two (mtmOI and mtmOIII) did not affect the biosynthesis of mithramycin. The mtmOII gene may code for an oxygenase responsible for the introduction of oxygen atoms at early steps in the biosynthesis of mithramycin leading to 4-demethylpremithramycinone. One of the reductases may be responsible for reductive cleavage of an intermediate from an enzyme and another for the reduction of a keto group in the side-chain of the mithramycin aglycon moiety. A hypothetical biosynthetic pathway showing in particular the involvement of oxygenase MtmOII and of various other gene products in mithramycin biosynthesis is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...