ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-11-03
    Description: During spliceosome assembly, splicing factor 1 (SF1) specifically recognizes the intron branch point sequence (BPS) UACUAAC in the pre-mRNA transcripts. We show that the KH-QUA2 region of SF1 defines an enlarged KH (hn RNP K) fold which is necessary and sufficient for BPS binding. The 3' part of the BPS (UAAC), including the conserved branch point adenosine (underlined), is specifically recognized in a hydrophobic cleft formed by the Gly-Pro-Arg-Gly motif and the variable loop of the KH domain. The QUA2 region recognizes the 5' nucleotides of the BPS (ACU). The branch point adenosine acting as the nucleophile in the first biochemical step of splicing is deeply buried. BPS RNA recognition suggests how SF1 may facilitate subsequent formation of the prespliceosomal complex A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Z -- Luyten, I -- Bottomley, M J -- Messias, A C -- Houngninou-Molango, S -- Sprangers, R -- Zanier, K -- Kramer, A -- Sattler, M -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1098-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691992" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *DNA-Binding Proteins ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; *Introns ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Precursors/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA-Binding Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Spliceosomes/metabolism ; *Transcription Factors ; Uracil/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-07-01
    Description: Discrimination between splice sites and similar, nonsplice sequences is essential for correct intron removal and messenger RNA formation in eukaryotes. The 65- and 35-kD subunits of the splicing factor U2AF, U2AF65 and U2AF35, recognize, respectively, the pyrimidine-rich tract and the conserved terminal AG present at metazoan 3' splice sites. We report that DEK, a chromatin- and RNA-associated protein mutated or overexpressed in certain cancers, enforces 3' splice site discrimination by U2AF. DEK phosphorylated at serines 19 and 32 associates with U2AF35, facilitates the U2AF35-AG interaction and prevents binding of U2AF65 to pyrimidine tracts not followed by AG. DEK and its phosphorylation are required for intron removal, but not for splicing complex assembly, which indicates that proofreading of early 3' splice site recognition influences catalytic activation of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soares, Luis Miguel Mendes -- Zanier, Katia -- Mackereth, Cameron -- Sattler, Michael -- Valcarcel, Juan -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1961-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Regulacio Genomica, Passeig Maritim 37-49, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; HeLa Cells ; Humans ; *Introns ; Mutation ; Nuclear Proteins/*metabolism ; Oncogene Proteins/genetics/*metabolism ; Phosphorylation ; Pyrimidines/metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear ; Ribonucleoproteins/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...