ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-02
    Description: Gene silencing by double-stranded RNA, denoted RNA interference, represents a new paradigm for rational drug design. However, the transformative therapeutic potential of short interfering RNA (siRNA) has been stymied by a key obstacle-safe delivery to specified target cells in vivo. Macrophages are particularly attractive targets for RNA interference therapy because they promote pathogenic inflammatory responses in diseases such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and diabetes. Here we report the engineering of beta1,3-D-glucan-encapsulated siRNA particles (GeRPs) as efficient oral delivery vehicles that potently silence genes in mouse macrophages in vitro and in vivo. Oral gavage of mice with GeRPs containing as little as 20 microg kg(-1) siRNA directed against tumour necrosis factor alpha (Tnf-alpha) depleted its messenger RNA in macrophages recovered from the peritoneum, spleen, liver and lung, and lowered serum Tnf-alpha levels. Screening with GeRPs for inflammation genes revealed that the mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) is a previously unknown mediator of cytokine expression. Importantly, silencing Map4k4 in macrophages in vivo protected mice from lipopolysaccharide-induced lethality by inhibiting Tnf-alpha and interleukin-1beta production. This technology defines a new strategy for oral delivery of siRNA to attenuate inflammatory responses in human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aouadi, Myriam -- Tesz, Gregory J -- Nicoloro, Sarah M -- Wang, Mengxi -- Chouinard, My -- Soto, Ernesto -- Ostroff, Gary R -- Czech, Michael P -- DK 30898/DK/NIDDK NIH HHS/ -- DK 32520/DK/NIDDK NIH HHS/ -- DK 60837/DK/NIDDK NIH HHS/ -- P30 DK032520/DK/NIDDK NIH HHS/ -- P30 DK032520-25/DK/NIDDK NIH HHS/ -- R01 DK030898/DK/NIDDK NIH HHS/ -- R01 DK030898-26/DK/NIDDK NIH HHS/ -- R01 DK060837/DK/NIDDK NIH HHS/ -- R01 DK060837-01A1/DK/NIDDK NIH HHS/ -- R37 DK030898/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1180-4. doi: 10.1038/nature07774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407801" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Animals ; *Drug Delivery Systems ; Enzyme Activation/drug effects ; *Gene Silencing ; Glucans/metabolism ; Inflammation/genetics/*prevention & control ; Interleukin-1beta/biosynthesis ; JNK Mitogen-Activated Protein Kinases/metabolism ; Lipopolysaccharides/pharmacology ; MAP Kinase Signaling System/drug effects ; Macrophages/drug effects/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Organ Specificity ; Protein-Serine-Threonine Kinases/*deficiency/*genetics/metabolism ; RNA, Small Interfering/*administration & dosage/genetics/metabolism ; Substrate Specificity ; Tumor Necrosis Factor-alpha/biosynthesis/metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-12-05
    Description: Fat cells or fat cell membranes were briefly subjected to mild proteolysis under conditions where insulin receptors were either free or bound to (125)I-labeled insulin. When receptors were then affinity-labeled to visualize the effects of this treatment, it was observed that receptors that had been occupied by ligand during proteolysis exhibited greater rates of degradation than unoccupied receptors. These results demonstrate that insulin-receptor interaction induces a change in receptor structure that may be related to signal transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pilch, P F -- Czech, M P -- AM 06069/AM/NIADDK NIH HHS/ -- AM 17893/AM/NIADDK NIH HHS/ -- HD 11343/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1980 Dec 5;210(4474):1152-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7003712" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Cell Membrane/metabolism ; Insulin/*metabolism ; Male ; Peptide Fragments/analysis ; Protein Binding ; Protein Conformation ; Rats ; Receptor, Insulin/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-03-04
    Description: Amino acid sequences deduced from rat complementary DNA clones encoding the insulin-like growth factor II (IGF-II) receptor closely resemble those of the bovine cation-independent mannose-6-phosphate receptor (Man-6-P receptorCI), suggesting they are identical structures. It is also shown that IGF-II receptors are adsorbed by immobilized pentamannosyl-6-phosphate and are specifically eluted with Man-6-P. Furthermore, Man-6-P specifically increases by about two times the apparent affinity of the purified rat placental receptor for 125I-labeled IGF-II. These results indicate that the type II IGF receptor contains cooperative, high-affinity binding sites for both IGF-II and Man-6-P-containing proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacDonald, R G -- Pfeffer, S R -- Coussens, L -- Tepper, M A -- Brocklebank, C M -- Mole, J E -- Anderson, J K -- Chen, E -- Czech, M P -- Ullrich, A -- CA 39240/CA/NCI NIH HHS/ -- DK 30648/DK/NIDDK NIH HHS/ -- DK 34063/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Mar 4;239(4844):1134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Massachusetts Medical Center, Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2964083" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/genetics/*metabolism ; Cell Membrane/analysis/metabolism ; Chromatography, Affinity ; DNA/genetics ; Female ; Hexosephosphates/*metabolism ; Insulin-Like Growth Factor II/*metabolism ; Mannosephosphates/*metabolism ; Molecular Sequence Data ; Placenta/analysis ; Pregnancy ; Rats ; Receptor, IGF Type 2 ; Receptor, Insulin/genetics/*metabolism ; Receptors, Somatomedin ; Sequence Homology, Nucleic Acid ; Somatomedins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...