ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (2)
  • Polymer and Materials Science  (2)
  • *DNA Replication  (1)
  • 1
    Publication Date: 2013-09-13
    Description: During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase delta (Poldelta). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Poldelta recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Poldelta-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915060/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915060/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Marenda A -- Kwon, YoungHo -- Xu, Yuanyuan -- Chung, Woo-Hyun -- Chi, Peter -- Niu, Hengyao -- Mayle, Ryan -- Chen, Xuefeng -- Malkova, Anna -- Sung, Patrick -- Ira, Grzegorz -- ES007061/ES/NIEHS NIH HHS/ -- ES015632/ES/NIEHS NIH HHS/ -- GM057814/GM/NIGMS NIH HHS/ -- GM080600/GM/NIGMS NIH HHS/ -- GM084242/GM/NIGMS NIH HHS/ -- R01 ES007061/ES/NIEHS NIH HHS/ -- R01 ES015632/ES/NIEHS NIH HHS/ -- R01 GM057814/GM/NIGMS NIH HHS/ -- R01 GM080600/GM/NIGMS NIH HHS/ -- R01 GM084242/GM/NIGMS NIH HHS/ -- R03 ES016434/ES/NIEHS NIH HHS/ -- T32 GM008307/GM/NIGMS NIH HHS/ -- T32GM07526-34/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Oct 17;502(7471):393-6. doi: 10.1038/nature12585. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baylor College of Medicine, Department of Molecular & Human Genetics, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025768" target="_blank"〉PubMed〈/a〉
    Keywords: *Crossing Over, Genetic ; DNA Helicases/deficiency/genetics/*metabolism ; DNA Polymerase III/*metabolism ; DNA Repair ; *DNA Replication ; DNA, Fungal/*biosynthesis/chemistry/metabolism ; Nucleic Acid Conformation ; Rad51 Recombinase/metabolism ; Saccharomyces cerevisiae/*enzymology/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 43 (1991), S. 749-756 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A study of morphology, physical, and mechanical properties of henequen (Agave fourcroydes) fibers have been performed in this article. It has been concluded that properties of the fibers are more uniform in their middle section. As other natural hard fibers, henequen has a relative high tenacity, low elongation at break and a low modulus. These properties suggest that the fiber could be used as reinforcing agent in composite materials.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Silicon films produced by the SIMOX process (separation by implanted oxygen) must be annealed at high temperature to remove the crystal damage introduced during implantation of the high oxygen dose. Different annealing gases, temperatures and times have been investigated. In such processes, various impurities present in the hightemperature ceramic furnace tube, as well as annealing gas species, may be incorporated into the samples. Secondary ion mass spectrometry (SIMS) is used as a quantitiative tool to analyze the diffusion of tube components and gases into annealed SIMOX samples. Samples. Samples prepared for this investigation were annealed in nitrogen and argon at temperatures ranging from 1250 to 1350 °C. We found that most impurities are present at low levels and are generally trapped in the surface oxide that is grown during the anneal. SIMS analyses of SIMOX samples annealed in nitrogen showed that nitrogen tends to collect in both the surface oxide band buried oxide layers, piling up at the oxide/silicon interfaces.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: On the six Apollo lunar landed missions, the Astronauts deployed the Apollo Lunar Surface Experiments Package (ALSEP) science stations which measured active and passive seismic events, magnetic fields, charged particles, solar wind, heat flow, the diffuse atmosphere, meteorites and their ejecta, lunar dust, etc. Today s investigators are able to extract new information and make new discoveries from the old ALSEP data utilizing recent advances in computer capabilities and new analysis techniques. However, current-day investigators are encountering problems in trying to use the ALSEP data. The data were in formats often not well described in the published reports and contained rerecording anomalies which required tape experts to resolve. To solve these problems the DPS Lunar Data Node was established at NASA Goddard Space Flight Center (GSFC) NASA Space Science Data Center (NSSDC) in 2008 and is currently in the process of making the existing archived ALSEP data available to current-day investigators in easily useable forms. However, current estimates by NSSDC archivists are that only about 60 percent of the PI processed ALSEP data and less than 30 percent of the raw experiment ALSEP data-of-interest to current lunar science investigators are currently in the NSSDC archives.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6670.2012 , NASA Science Lunar Institute (NLSI) Forum Meeting; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: On November 19, 1969, Apollo 12 astronauts installed a Lunar Surface Magnetometer (LSM) as a part ofthe Apollo Lunar Surface Experiment Package, making the first magnetic field measurement on aplanetary body other than Earth. The subsequent Apollo missions deployed two more LSM's (Apollos 15and 16), two Lunar Portable Magnetometers (Apollos 14 and 15), and two Sub-satellite BiaxialMagnetometers (SBMs of Apollos 15 and 16). After almost a half century, the Apollo 15 and 16 missionsare still the only lunar missions conducting simultaneous surface and orbital magnetic field experiments.The Apollo magnetic field experiments enabled many first discoveries, including the lunar magneticanomalies and the electrical conductivity of the Moon. Since the Apollo era, the archaic data format hasbeen hampering the re-examination of Apollo magnetic field records until recently. We have nowrestored most of the digital Apollo magnetic field records archived at NSSDC, including the 0.3-s datafrom the Apollo 12, 15 and 16 LSMs and the 24-s data from Apollo 15 and 16 SBMs. The restored LSMdata have revealed many narrowband ion cyclotron waves in the Earth's magnetotail that were not
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN59814 , American Geophysical Union (2018) Fall Meeting 2018; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...