ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-08-30
    Description: In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH2-terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoekstra, M F -- Liskay, R M -- Ou, A C -- DeMaggio, A J -- Burbee, D G -- Heffron, F -- New York, N.Y. -- Science. 1991 Aug 30;253(5023):1031-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92186.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887218" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Casein Kinase I ; *DNA Damage ; *DNA Repair ; Fungal Proteins/*genetics/metabolism ; Gene Library ; Genes, Fungal ; Meiosis ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Phenotype ; *Protein Kinases ; Restriction Mapping ; Saccharomyces cerevisiae/enzymology/*genetics/physiology ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-08-19
    Description: The discovery that mutations in DNA mismatch repair genes can cause hereditary nonpolyposis colorectal cancer has stimulated interest in understanding the mechanism of DNA mismatch repair in eukaryotes. In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins. Experiments revealed that the yeast MLH1 and PMS1 proteins physically associate, possibly forming a heterodimer, and that MLH1 and PMS1 act in concert to bind a MSH2-heteroduplex complex containing a G-T mismatch. Thus, MSH2, MLH1, and PMS1 are likely to form a ternary complex during the initiation of eukaryotic DNA mismatch repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prolla, T A -- Pang, Q -- Alani, E -- Kolodner, R D -- Liskay, R M -- GM 322741/GM/NIGMS NIH HHS/ -- GM 45413/GM/NIGMS NIH HHS/ -- HG00305/GM50006/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1091-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066446" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; *Carrier Proteins ; Chromatography, Affinity ; *DNA Repair ; DNA Replication ; DNA, Fungal/*metabolism ; *DNA-Binding Proteins ; Fungal Proteins/*metabolism ; Models, Genetic ; MutS Homolog 2 Protein ; Nucleic Acid Heteroduplexes/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...