ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1995-02-10
    Description: Integrin receptors mediate cell adhesion, signal transduction, and cytoskeletal organization. How a single transmembrane receptor can fulfill multiple functions was clarified by comparing roles of receptor occupancy and aggregation. Integrin occupancy by monovalent ligand induced receptor redistribution, but minimal tyrosine phosphorylation signaling or cytoskeletal protein redistribution. Aggregation of integrins by noninhibitory monoclonal antibodies on beads induced intracellular accumulations of pp125FAK and tensin, as well as phosphorylation, but no accumulation of other cytoskeletal proteins such as talin. Combining antibody-mediated clustering with monovalent ligand occupancy induced accumulation of seven cytoskeletal proteins, including alpha-actinin, talin, and F-actin, thereby mimicking multivalent interactions with fibronectin or polyvalent peptides. Integrins therefore mediate a complex repertoire of functions through the distinct effects of receptor aggregation, receptor occupancy, or both together.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, S -- Akiyama, S K -- Yamada, K M -- New York, N.Y. -- Science. 1995 Feb 10;267(5199):883-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7846531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Cells, Cultured ; Cytoskeletal Proteins/*metabolism ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Humans ; Integrins/*physiology ; Ligands ; Microfilament Proteins/metabolism ; Molecular Sequence Data ; Oligopeptides/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-08-26
    Description: Proteasomes are the proteolytic complex responsible for major histocompatibility complex (MHC) class I-restricted antigen presentation. Interferon gamma treatment increases expression MHC-encoded LMP2 and LMP7 subunits of the proteasome and decreases expression of two proteasome subunits, named X and Y, which alters the proteolytic specificity of proteasomes. Molecular cloning of complementary DNAs encoding X and Y showed that their proteins are proteasomal subunits with high amino acid similarity to LMP7 and LMP2, respectively. Thus, interferon gamma may induce subunit replacements of X and Y by LMP7 and LMP2, respectively, producing proteasomes perhaps more appropriate for the immunological processing of endogenous antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akiyama, K -- Yokota, K -- Kagawa, S -- Shimbara, N -- Tamura, T -- Akioka, H -- Nothwang, H G -- Noda, C -- Tanaka, K -- Ichihara, A -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1231-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Urology, School of Medicine, University of Tokushima, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; *Cysteine Endopeptidases ; DNA, Complementary/genetics ; *Down-Regulation ; Endopeptidases/chemistry/genetics ; Humans ; Interferon-gamma/*pharmacology ; Major Histocompatibility Complex ; Molecular Sequence Data ; *Multienzyme Complexes ; *Proteasome Endopeptidase Complex ; Proteins/chemistry/*genetics/metabolism ; Sequence Homology, Amino Acid ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...