ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Cell Transformation, Neoplastic/genetics  (1)
  • Cell & Developmental Biology  (1)
  • 1
    Publication Date: 2014-05-16
    Description: Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between 'young' bone-marrow-derived and 'old' thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martins, Vera C -- Busch, Katrin -- Juraeva, Dilafruz -- Blum, Carmen -- Ludwig, Carolin -- Rasche, Volker -- Lasitschka, Felix -- Mastitsky, Sergey E -- Brors, Benedikt -- Hielscher, Thomas -- Fehling, Hans Joerg -- Rodewald, Hans-Reimer -- England -- Nature. 2014 May 22;509(7501):465-70. doi: 10.1038/nature13317. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany [2] Institute of Immunology, University of Ulm, D-89081 Ulm, Germany. ; Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany. ; Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany. ; Institute of Immunology, University of Ulm, D-89081 Ulm, Germany. ; Core Facility Small Animal MRI, University of Ulm, D-89081 Ulm, Germany. ; Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany. ; Division of Biostatistics, German Cancer Research Center, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828041" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Movement ; *Cell Transformation, Neoplastic/genetics ; Disease Progression ; Female ; Gene Expression Regulation, Neoplastic ; HMGA Proteins/genetics ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics/*pathology ; Receptor, Notch1/genetics ; T-Lymphocytes/cytology/metabolism/pathology ; Thymus Gland/*cytology/pathology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 317-329 
    ISSN: 0730-2312
    Keywords: cytokines ; lipopolysaccharide ; CD14 antigen ; human monocytes ; macrophages ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The 52 kD myeloid membrane glycoprotein CD14 represents the receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein (LBP); it is involved in LPS induced tumor necrosis factor-alpha production. Expression of CD14 increases in monocytes differentiating into macrophages, and it is reduced by rIFNg in monocytes in vitro. In the present study CD14 membrane antigen expression was investigated in cultures of human mononuclear leucocytes (PBL), in elutriated, purified monocytes, and in blood monocyte derived Teflon cultured macrophages. Cells were incubated for 15 or 45 h with rIL-1, rIL-2, rIL-3, rIL-4, rIL-5, rIL-6, rTNFa, rGM-CSF, rM-CSF, rTGFb1, rIFNa, lipopolysaccharide (LPS), and, as a control, rIFNg. The monoclonal antibodies Leu-M3 and MEM 18 were used for labelling of CD14 antigen by indirect immunofluorescence and FACS analysis of scatter gated monocytes or macrophages. IFNg concentrations were determined in PBL culture supernatants by ELISA. rIFNa and rIL-2 reduced CD14 in 15 and 45 h PBL cultures, an effect mediated by endogenous IFNg, since it was abolished by simultaneous addition of an anti-IFNg antibody. rIFNa and rIL-2 were ineffective in purified monocytes or macrophages. rIL-4 strongly reduced CD14 in PBL and purified monocytes after 45 h, whereas in macrophages the decrease was weak, although measurable after 15 h. The other cytokines investigated did not change CD14 antigen expression. Cycloheximide alone reduced CD14, but when added in combination with rIFNg the effect on CD14 downregulation was more pronounced. The effect of rIFNg on CD14 in PBL cultures was dose-dependently inhibited by rIL-4 and this inhibition is probably due to an IL-4 mediated blockade of IFNg secretion. LPS at a low dose increased CD14, at a high dose it produced a variable decrease of CD14 in PBL, which was probably due to LPS induced IFNg secretion. LPS strongly enhanced CD14 in 45 h cultures of purified monocytes. The results, showing that CD14 antigen expression is upregulated by LPS and downregulated by rIFNg and rIL-4, suggest that the LPS-LBP receptor is involved in the feedback response of IFNg and IL-4 to LPS stimulation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...