ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-12-01
    Description: Heterotrimeric GTP-binding proteins (G proteins) control cellular functions by transducing signals from the outside to the inside of cells. Regulator of G protein signaling (RGS) proteins are key modulators of the amplitude and duration of G protein-mediated signaling through their ability to serve as guanosine triphosphatase-activating proteins (GAPs). We have identified RGS-PX1, a Galpha(s)-specific GAP. The RGS domain of RGS-PX1 specifically interacted with Galpha(s), accelerated its GTP hydrolysis, and attenuated Galpha(s)-mediated signaling. RGS-PX1 also contains a Phox (PX) domain that resembles those in sorting nexin (SNX) proteins. Expression of RGS-PX1 delayed lysosomal degradation of the EGF receptor. Because of its bifunctional role as both a GAP and a SNX, RGS-PX1 may link heterotrimeric G protein signaling and vesicular trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, B -- Ma, Y C -- Ostrom, R S -- Lavoie, C -- Gill, G N -- Insel, P A -- Huang, X Y -- Farquhar, M G -- AG14563/AG/NIA NIH HHS/ -- CA58689/CA/NCI NIH HHS/ -- DK17780/DK/NIDDK NIH HHS/ -- GM56904/GM/NIGMS NIH HHS/ -- HL53773/HL/NHLBI NIH HHS/ -- HL63885/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1939-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729322" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Amino Acid Sequence ; Animals ; COS Cells ; Carrier Proteins/chemistry/*metabolism ; Cattle ; Cell Line ; Cyclic AMP/metabolism ; Endosomes/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors/*metabolism ; GTPase-Activating Proteins/chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Protein Transport ; RGS Proteins/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Adrenergic, beta-2/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Sorting Nexins ; Substrate Specificity ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-02
    Description: Although ligand activation of receptor signaling is well understood, less is known about how a cell switches off signaling by the activated receptor. In his Perspective, Gill discusses new work (Haj et al.) that visualizes one step in the process of deactivating a ligand-activated receptor tyrosine kinase--the dephosphorylation of the internalized receptor by a phosphatase in the endoplasmic reticulum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gill, Gordon N -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1654-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, San Diego, La Jolla, CA 92093-0650, USA. ggill@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872824" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/enzymology ; Endocytosis ; Endoplasmic Reticulum/*enzymology ; Endosomes/enzymology/metabolism ; Energy Transfer ; Fluorescence ; Ligands ; Lysosomes/metabolism ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein Transport ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptors, Platelet-Derived Growth Factor/chemistry/*metabolism ; Ubiquitin/metabolism ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hornsby, P J -- Gill, G N -- New York, N.Y. -- Science. 1980 Jun 27;208(4451):1482-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7384793" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex/physiology ; *Aging ; *Cell Differentiation ; *Cell Division ; Cells, Cultured ; Fibroblasts/physiology ; Humans ; Life Expectancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...