ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-21
    Description: The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reichstein, Markus -- Bahn, Michael -- Ciais, Philippe -- Frank, Dorothea -- Mahecha, Miguel D -- Seneviratne, Sonia I -- Zscheischler, Jakob -- Beer, Christian -- Buchmann, Nina -- Frank, David C -- Papale, Dario -- Rammig, Anja -- Smith, Pete -- Thonicke, Kirsten -- van der Velde, Marijn -- Vicca, Sara -- Walz, Ariane -- Wattenbach, Martin -- England -- Nature. 2013 Aug 15;500(7462):287-95. doi: 10.1038/nature12350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. markus.reichstein@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955228" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Cycle ; *Climate Change ; *Ecosystem ; Plants/metabolism ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-26
    Description: The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75 degrees north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvalhais, Nuno -- Forkel, Matthias -- Khomik, Myroslava -- Bellarby, Jessica -- Jung, Martin -- Migliavacca, Mirco -- Mu, Mingquan -- Saatchi, Sassan -- Santoro, Maurizio -- Thurner, Martin -- Weber, Ulrich -- Ahrens, Bernhard -- Beer, Christian -- Cescatti, Alessandro -- Randerson, James T -- Reichstein, Markus -- England -- Nature. 2014 Oct 9;514(7521):213-7. doi: 10.1038/nature13731. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Departamento de Ciencias e Engenharia do Ambiente, DCEA, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. ; Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; 1] Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK [2] Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Remote Sensing of Environmental Dynamics Lab, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy. ; Department of Earth System Science, University of California Irvine, Irvine, California 92697, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. ; Gamma Remote Sensing, Worbstrasse 225, 3073 Gumligen, Switzerland. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07745 Jena, Germany [2] Department of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius vag 8, 10691 Stockholm, Sweden. ; European Commission, Joint Research Centre, Institute for Environment and Sustainability, Climate Risk Management Unit, Via E. Fermi, 2749, I-21027 Ispra, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252980" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Carbon/*metabolism ; *Carbon Cycle ; *Climate ; *Ecosystem ; Feedback ; Hydrology ; Models, Theoretical ; Plants/metabolism ; Rain ; Soil/chemistry ; Temperature ; Time Factors ; Water Cycle
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-23
    Description: The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlstrom, Anders -- Raupach, Michael R -- Schurgers, Guy -- Smith, Benjamin -- Arneth, Almut -- Jung, Martin -- Reichstein, Markus -- Canadell, Josep G -- Friedlingstein, Pierre -- Jain, Atul K -- Kato, Etsushi -- Poulter, Benjamin -- Sitch, Stephen -- Stocker, Benjamin D -- Viovy, Nicolas -- Wang, Ying Ping -- Wiltshire, Andy -- Zaehle, Sonke -- Zeng, Ning -- New York, N.Y. -- Science. 2015 May 22;348(6237):895-9. doi: 10.1126/science.aaa1668. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden. Department of Earth System Science, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA 94305, USA. anders.ahlstrom@nateko.lu.se. ; Climate Change Institute, Australian National University, Canberra, ACT 0200, Australia. ; Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark. ; Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden. ; Institute for Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute for Technology, 82476 Garmisch-Partenkirchen, Germany. ; Biogeochemical Intergration Department, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. ; Global Carbon Project, CSIRO Oceans and Atmospheric Flagship, Canberra, ACT, Australia. ; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK. ; Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Institute of Applied Energy, 105-0003 Tokyo, Japan. ; Institute on Ecosystems and the Department of Ecology, Montana State University, Bozeman, MT 59717, USA. ; College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK. ; Department of Life Sciences, Imperial College, Ascot SL5 7PY, UK. Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland. ; Laboratoire des sciences du climat et de l'environnement, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France. ; CSIRO Ocean and Atmosphere Flagship, PMB 1, Aspendale, Victoria 3195, Australia. ; Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK. ; Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999504" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; *Carbon Cycle ; Carbon Dioxide/*analysis ; *Forests ; *Grassland
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-23
    Description: Atmospheric monitoring of high northern latitudes (above 40 degrees N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forkel, Matthias -- Carvalhais, Nuno -- Rodenbeck, Christian -- Keeling, Ralph -- Heimann, Martin -- Thonicke, Kirsten -- Zaehle, Sonke -- Reichstein, Markus -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):696-9. doi: 10.1126/science.aac4971. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. matthias.forkel@geo.tuwien.ac.at ncarval@bgc-jena.mpg.de. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. CENSE, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal. matthias.forkel@geo.tuwien.ac.at ncarval@bgc-jena.mpg.de. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. ; Scripps Institution of Oceanography, La Jolla, CA 92093, USA. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. Department of Physical Sciences, University of Helsinki, Helsinki, Finland. ; Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. Michael-Stifel-Center Jena for Data-driven and Simulation Science, 07743 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797146" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Cycle ; Carbon Dioxide/*metabolism ; *Climate Change ; Ecosystem ; Environmental Monitoring ; Photosynthesis ; Plants/*metabolism ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...