ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-05-01
    Description: The functional and anatomical rearrangements of cortical sensory maps accompanying changes in experience are not well understood. We examined in vivo and in vitro how the sensory map and underlying synaptic connectivity of the developing rat barrel cortex are altered when the sensory input to the cortex is partially deprived. In the nondeprived cortex, both the sensory responses and synaptic connectivity between columns were strengthened through an increase in the synaptic connection probability between L2/3 pyramids in adjacent columns. This was accompanied by a selective growth of L2/3pyramid axonal arbors between spared columns. In contrast, deprived and nondeprived cortical columns became weakly connected in their L2/3 pyramid connections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, Carl C H -- Brecht, Michael -- Hahn, Thomas T G -- Sakmann, Bert -- New York, N.Y. -- Science. 2004 Apr 30;304(5671):739-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany. carl.petersen@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118164" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Image Processing, Computer-Assisted ; In Vitro Techniques ; Nerve Net/physiology ; *Neuronal Plasticity ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology/ultrastructure ; Rats ; Rats, Wistar ; Somatosensory Cortex/cytology/growth & development/*physiology ; Synapses/*physiology ; Synaptic Transmission ; Vibrissae/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-23
    Description: In vivo intracellular recordings of hippocampal neurons reveal the occurrence of fast events of small amplitude called spikelets or fast prepotentials. Because intracellular recordings have been restricted to anesthetized or head-fixed animals, it is not known how spikelet activity contributes to hippocampal spatial representations. We addressed this question in CA1 pyramidal cells by using in vivo whole-cell recording in freely moving rats. We observed a high incidence of spikelets that occurred either in isolation or in bursts and could drive spiking as fast prepotentials of action potentials. Spikelets strongly contributed to spiking activity, driving approximately 30% of all action potentials. CA1 pyramidal cell firing and spikelet activity were comodulated as a function of the animal's location in the environment. We conclude that spikelets have a major impact on hippocampal activity during spatial exploration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epsztein, Jerome -- Lee, Albert K -- Chorev, Edith -- Brecht, Michael -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):474-7. doi: 10.1126/science.1182773.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bernstein Center for Computational Neuroscience, Humboldt University, 10115 Berlin, Germany. epsztein@inmed.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093475" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; CA1 Region, Hippocampal/cytology/*physiology ; *Exploratory Behavior ; Male ; Maze Learning ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-25
    Description: Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray, Saikat -- Naumann, Robert -- Burgalossi, Andrea -- Tang, Qiusong -- Schmidt, Helene -- Brecht, Michael -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):891-6. doi: 10.1126/science.1243028. Epub 2014 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstrasse 13 Haus 6, 10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24457213" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Calbindins/analysis/metabolism ; Dendrites/physiology ; Dentate Gyrus/physiology ; Entorhinal Cortex/*cytology/metabolism/physiology ; Female ; Male ; *Nerve Net ; Pyramidal Cells/metabolism/*physiology/*ultrastructure ; Rats ; Rats, Wistar ; Staining and Labeling ; *Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...