ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine; Statistics and Probability  (2)
  • Inorganic Chemistry  (2)
  • (Porphyridium cruentum)  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Bioenergetics 592 (1980), S. 277-284 
    ISSN: 0005-2728
    Keywords: (Porphyridium cruentum) ; Energy transfer ; Fluorescence ; Low temperature ; Photosystem I ; Phycobilisome
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 82 (1913), S. 278-282 
    ISSN: 0863-1778
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 80 (1913), S. 93-103 
    ISSN: 0863-1778
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Aus den Versuchen ergibt sich, daß Cuprohydrid bei der Reaktion zwischen Kupfersulfat und unterphosphoriger Säure entsteht, daß aber die Reinheit des Produktes von begrenzten Versuchsbedingungen, besonders von Temperatur und Zeit abhängt. Die Versuche bei gewöhnlicher Temperatur zeigen, daß nach mehrstündigem Stehen das Produkt Hydrid und Oxyd enthält, und auf die Koexistenz dieser beiden Stoffe ist die Explosionsfähigkeit der trockenen Substanz bei Berührung mit Luft zurückzuführen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Timeline, partial treatment, and alternate medications were added to the IMM to improve the fidelity of this model to enhance decision support capabilities. Using standard design reference missions, IMM VV testing compared outputs from the current operational IMM (v3) with those from the model with added functionalities (v4). These new capabilities were examined in a comparative, stepwise approach as follows: a) comparison of the current operational IMM v3 with the enhanced functionality of timeline alone (IMM 4.T), b) comparison of IMM 4.T with the timeline and partial treatment (IMM 4.TPT), and c) comparison of IMM 4.TPT with timeline, partial treatment and alternative medication (IMM 4.0).
    Keywords: Aerospace Medicine; Statistics and Probability
    Type: GRC-E-DAA-TN29814 , 2016 NASA Human Research Program InvestigatorsaEuro(TM) Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Changes in urine chemistry, during and post flight, potentially increases the risk of renal stones in astronauts. Although much is known about the effects of space flight on urine chemistry, no inflight incidence of renal stones in US astronauts exists and the question "How much does this risk change with space flight?" remains difficult to accurately quantify. In this discussion, we tackle this question utilizing a combination of deterministic and probabilistic modeling that implements the physics behind free stone growth and agglomeration, speciation of urine chemistry and published observations of population renal stone incidences to estimate changes in the rate of renal stone presentation. The modeling process utilizes a Population Balance Equation based model developed in the companion IWS abstract by Kassemi et al. (2016) to evaluate the maximum growth and agglomeration potential from a specified set of urine chemistry values. Changes in renal stone occurrence rates are obtained from this model in a probabilistic simulation that interrogates the range of possible urine chemistries using Monte Carlo techniques. Subsequently, each randomly sampled urine chemistry undergoes speciation analysis using the well-established Joint Expert Speciation System (JESS) code to calculate critical values, such as ionic strength and relative supersaturation. The Kassemi model utilizes this information to predict the mean and maximum stone size. We close the assessment loop by using a transfer function that estimates the rate of stone formation from combining the relative supersaturation and both the mean and maximum free stone growth sizes. The transfer function is established by a simulation analysis which combines population stone formation rates and Poisson regression. Training this transfer function requires using the output of the aforementioned assessment steps with inputs from known non-stone-former and known stone-former urine chemistries. Established in a Monte Carlo system, the entire renal stone analysis model produces a probability distribution of the stone formation rate and an expected uncertainty in the estimate. The utility of this analysis will be demonstrated by showing the change in renal stone occurrence predicted by this method using urine chemistry distributions published in Whitson et al. 2009. A comparison to the model predictions to previous assessments of renal stone risk will be used to illustrate initial validation of the model.
    Keywords: Aerospace Medicine; Statistics and Probability
    Type: GRC-E-DAA-TN29813 , 2016 NASA Human Research Program Investigators Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, Tx; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...