ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Barley DNA ; (1→3)-β-Glucanase ; Linkage map ; Pathogenesis-related proteins ; Gene family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Members of the (1→3)-β-glucan glucanohydrolase (EC 3.2.1.39) gene family have been mapped on the barley genome using three doubled haploid populations and seven wheat-barley addition lines. Specific probes or polymerase chain reaction (PCR) primers were generated for the seven barley (1→3)-β-glucanase genes for which cDNA or genomic clones are currently available. The seven genes are all located on the long arm of chromosome 3 (3HL), and genes encoding isoenzymes GI, GII, GIII, GIV, GV and GVII (ABG2) are clustered in a region less than 20 cM in length. The region is flanked by the RFLP marker MWG2099 on the proximal side and the Barley Yellow Mosaic Virus (BYMV) resistance gene ym4 at the distal end. The gene encoding isoenzyme GVI lies approximately 50 cM outside this cluster, towards the centromere. With the exception of the gene encoding isoenzyme GIV, all of the (1→3)-β-glucanase genes are represented by single copies on the barley genome. The probe for the isoenzyme GIV gene hybridized with four DNA bands during Southern blot analysis, only one of which could be incorporated into the consensus linkage map.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words  Barley DNA ; (1→3)-β-Glucanase ; Linkage map ; Pathogenesis-related proteins ; Gene family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   Members of the (1→3)-β-glucan glucanohydrolase (EC 3.2.1.39) gene family have been mapped on the barley genome using three doubled haploid populations and seven wheat-barley addition lines. Specific probes or polymerase chain reaction (PCR) primers were generated for the seven barley (1→3)-β-glucanase genes for which cDNA or genomic clones are currently available. The seven genes are all located on the long arm of chromosome 3 (3HL), and genes encoding isoenzymes GI, GII, GIII, GIV, GV and GVII (ABG2) are clustered in a region less than 20 cM in length. The region is flanked by the RFLP marker MWG2099 on the proximal side and the Barley Yellow Mosaic Virus (BYMV) resistance gene ym4 at the distal end. The gene encoding isoenzyme GVI lies approximately 50 cM outside this cluster, towards the centromere. With the exception of the gene encoding isoenzyme GIV, all of the (1→3)-β-glucanase genes are represented by single copies on the barley genome. The probe for the isoenzyme GIV gene hybridized with four DNA bands during Southern blot analysis, only one of which could be incorporated into the consensus linkage map.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The rate at which the wind can redistribute sedimentary material is an important part of any planet's sedimentologic cycle, particularly for Mars, where the competing effects of other gradational processes are less than on Earth. The aeolian drift potential (DP) is a measure of the amount of material capable of being moved through a unit length by the wind for a given period of time. DP is a useful measure of the potential redistribution rate of windblown material on regional scales. The Martian aeolian DP was calculated from laboratory studies of sand movement conducted at Martian atmospheric densities and from surface stress, temperature, and pressure values for that region as determined from the Mars General (Atmospheric) Circulation Model (GCM) developed at the NASA/Ames Research Center. In our simulations for Mars, DP changes in both magnitude (as expected) and direction if the saltation threshold is altered.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1521-1522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Most studies of active aeolian processes on Mars have focused on dust, i.e., particles approximately 1 micron in diameter that are transported in suspension by wind. The presence of sand dunes on Mars indicates that larger grains (approximately greater than 60 microns, transported primarily in saltation) are also present. Although indirect evidence suggests that some dunes may be active, definitive evidence is lacking. Nonetheless, numerous studies demonstrate that sand is substantially easier to transport by wind than dust, and it is reasonable to infer that sand transportation in saltation occurs under present Martian conditions. In order to assess potential source regions, transportation pathways, and sites of deposition for sand on Mars, an iterative sand transport algorithm was developed that is based on the Mars General Circulation Model of Pollack et al. The results of the dust transport model are then compared with observed surface features, such as dune field locations observed on images, and surficial deposits as inferred from Viking IRTM observations. Preliminary results suggest that the north polar dune fields in the vicinity of 270 degrees W, 70 degrees N originated from weathered polar layered plains centered at 280 degrees W, 85 degrees N, and that Thaumasia Fossae, southern Hellas Planitia, and the area west of Hellespontus Montes are sand depositional sites. Examples of transportation 'corridors' include a westward pathway in the latitudinal band 35 degrees N to 45 degrees N, and a pathway southward from Solis Planum to Thaumasia Fossae, among others.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 563-564
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...