ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rhizophora mangle  (3)
  • (+/-)-lyoniresinol 2α-O-rhamnoside.  (2)
  • Cosmology  (2)
  • diterpenes
Collection
Keywords
Years
  • 1
    Publication Date: 2017-10-31
    Description: Author(s): Shane Farnsworth, Jean-Luc Lehners, and Taotao Qiu When coupling fermions to gravity, torsion is naturally induced. We consider the possibility that fermion bilinears can act as a source for torsion, altering the dynamics of the early universe such that the big bang gets replaced with a classical nonsingular bounce. We extend previous studies in sev... [Phys. Rev. D 96, 083530] Published Mon Oct 30, 2017
    Keywords: Cosmology
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-14
    Description: Author(s): Sebastian F. Bramberger, Shane Farnsworth, and Jean-Luc Lehners The authors discuss the emergence of anisotropic inflationary universes using saddle point (WKB) approximations in path integral approach to quantum gravity. All instanton solutions imply inflationary dynamics and anisotropies are quickly suppressed, however, the anisotropies slow down the approach to classicality where the wave function describes a classical spacetime/universe. [Phys. Rev. D 95, 083513] Published Thu Apr 13, 2017
    Keywords: Cosmology
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0031-9422
    Keywords: Annonaceae ; Polyalthia barnesii ; clerodanes ; cytotoxicity assessment. ; diterpenes ; stem bark
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 29 (1990), S. 3366-3368 
    ISSN: 0031-9422
    Keywords: (+/-)-lyoniresinol 2α-O-rhamnoside. ; Casuarina junghuhniana ; Casuarinaceae ; alnusdiol ; casuarinondiol ; diarylheptanoid
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0031-9422
    Keywords: Annonaceae ; Polyalthia barnesii ; clerodanes ; cytotoxicity assessment. ; diterpenes ; stem bark
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 29 (1990), S. 3366-3368 
    ISSN: 0031-9422
    Keywords: (+/-)-lyoniresinol 2α-O-rhamnoside. ; Casuarina junghuhniana ; Casuarinaceae ; alnusdiol ; casuarinondiol ; diarylheptanoid
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Rhizophora mangle ; Growth ; Photosynthesis ; Reproduction ; CO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mangroves, woody halophytes restricted to protected tropical coasts, form some of the most productive ecosystems in the world, but their capacity to act as a carbon source or sink under climate change is unknown. Their ability to adjust growth or to function as potential carbon sinks under conditions of rising atmospheric CO2 during global change may affect global carbon cycling, but as yet has not been investigated experimentally. Halophyte responses to CO2 doubling may be constrained by the need to use carbon conservatively under water-limited conditions, but data are lacking to issue general predictions. We describe the growth, architecture, biomass allocation, anatomy, and photosynthetic physiology of the predominant neotropical mangrove tree, Rhizophora mangle L., grown solitarily in ambient (350 μll−1) and double-ambient (700 μll−1) CO2 concentrations for over 1 year. Mangrove seedlings exhibited significantly increased biomass, total stem length, branching activity, and total leaf area in elevated CO2. Enhanced total plant biomass under high CO2 was associated with higher root:shoot ratios, relative growth rates, and net assimilation rates, but few allometric shifts were attributable to CO2 treatment independent of plant size. Maximal photosynthetic rates were enhanced among high-CO2 plants while stomatal conductances were lower, but the magnitude of the treatment difference declined over time, and high-CO2 seedlings showed a lower Pmax at 700 μll−1 CO2 than low-CO2 plants transferred to 700 μll−1 CO2: possible evidence of downregulation. The relative thicknesses of leaf cell layers were not affected by treatment. Stomatal density decreased as epidermal cells enlarged in elevated CO2. Foliar chlorophyll, nitrogen, and sodium concentrations were lower in high CO2. Mangroves grown in high CO2 were reproductive after only 1 year of growth (fully 2 years before they typically reproduce in the field), produced aerial roots, and showed extensive lignification of the main stem; hence, elevated CO2 appeared to accelerate maturation as well as growth. Data from this long-term study suggest that certain mangrove growth characters will change flexibly as atmospheric CO2 increases, and accord with responses previously shown in Rhizophora apiculata. Such results must be integrated with data from sea-level rise studies to yield predictions of mangrove performance under changing climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Key words Growth ; Mangroves ; Photosynthesis ; Rhizophora mangle ; Sea level rise
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tropical coastal forests – mangroves – will be one of the first ecosystems to be affected by altered sea levels accompanying global climate change. Responses of mangrove forests to changing sea levels depend on reactions of individual plants, yet such responses have not been addressed experimentally. We report data from a long-term greenhouse study that assessed physiological and individual growth responses of the dominant neotropical mangrove, Rhizophora mangle, to levels of inundation expected to occur in the Caribbean within 50–100 years. In this study, we grew potted plants in tanks with simulated semidiurnal (twice daily) high tides that approximated current conditions (MW plants), a 16-cm increase in sea level (LW plants), and a 16-cm decrease in sea level (HW plants). The experiment lasted 2½ years, beginning with mangrove seedlings and terminating after plants began to reproduce. Environmental (air temperature, relative humidity, photosynthetically active radiation) and edaphic conditions (pH, redox, soil sulfide) approximated field conditions in Belize, the source locale for the seedlings. HW plants were shorter and narrower, and produced fewer branches and leaves, responses correlated with the development of acid-sulfide soils in their pots. LW plants initially grew more rapidly than MW plants. However, the growth of LW plants slowed dramatically once they reached the sapling stage, and by the end of the experiment, MW plants were 10–20% larger in all measured growth parameters. Plants did not exhibit differences in allometric growth as a function of inundation. Anatomical characteristics of leaves did not differ among treatments. Both foliar C:N and root porosity decreased from LW through MW to HW. Relative to LW and HW plants, MW plants had 1–7% fewer stomata/mm2, 6–21% greater maximum photosynthetic rates, 3–23% greater absolute relative growth rates (RGRs), and a 30% higher RGR for a given increase in net assimilation rate. Reduced growth of R. mangle under realistic conditions approximating future inundation depths likely will temper projected increased growth of this species under concomitant increases in the atmospheric concentration of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5117
    Keywords: Belize ; epibionts ; isopods ; mangroves ; Melongena ; Rhizophora mangle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aerial prop roots of the neotropical red mangrove,Rhizophora mangle L., begin growing well above highest high water (HHW) and often extend well below lowest low water (LLW) before rooting in the benthic substratum. In Belize, Central America, prop roots growing below LLW are colonized by diverse assemblages of organisms, including macroalgae, hydrozoans, ascidians, sponges, anemones, hard corals, and isopod crustaceans. Mangroves, root-fouling epibionts, root herbivores, and benthic predators engage in complex interactions that are major determinants of mangrove growth and production. Species richness of root epibionts increases with distance from the mainland and with proximity to the barrier reef. Species richness decreases with variability in water temperature and salinity. Ascidians and sponges transplanted from Lark Cay into the coastal Placencia Lagoon failed to survive, but anemones from Lark Cay survived in Placencia Lagoon. Reciprocal transplants survived off-shore. The gastropod predator,Melongena melongena L., present only in mainland estuaries, reduced local barnacle abundance and epibiont species richness in Placencia Lagoon. Isopod species richness also increases with distance from shore, but the number of roots bored by these species decreases. These isopods can reduce root relative growth rate (RGRroot) by 55%. On off-shore cays, sponges and ascidians ameliorate negative effects of isopods. In mainland estuaries where epibionts are less common, isopod damage to roots is more severe. Experimental studies in mangrove swamps throughout the world would clarify the importance of plant-animal interactions in these widespread tropical ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...