ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Zoological Institute of Russian Academy of Sciences
    In:  Permafrost and Periglacial Processes, 14 (2). pp. 173-185.
    Publication Date: 2015-03-31
    Description: Permafrost soils of high-latitude wetlands are an important source of atmospheric methane. In order to improve our understanding of the large seasonal fluctuations of trace gases, we measured the CH4 fluxes as well as the fundamental processes of CH4 production and CH4 oxidation under in situ conditions in a typical polygon tundra in the Lena Delta, Siberia. Net CH4 fluxes were measured from the polygon depression and from the polygon rim from the end of May to the beginning of September 1999. The mean flux rate of the depression was 53.2 ± 8.7 mg CH4 m−2 d−1 with maximum in mid-July (100–120 mg CH4 m−2 d−1), whereas the mean flux rate of the dryer rim part of the polygon was 4.7 ± 2.5 CH4 m−2 d−1. The microbial CH4 production and oxidation showed significant differences during the vegetation period. The CH4 production in the upper soil horizon of the polygon depression was about 10 times higher (38.9 ± 2.9 nmol CH4 h−1 g−1) in July than in August (4.7 ± 1.3 nmol CH4 h−1 g−1). The CH4 oxidation behaved exactly in reverse: the oxidation rate of the upper soil horizon was low (1.9 ± 0.3 nmol CH4 h−1 g−1) in July compared to the activity in August (max. 7.0 ± 1.3 nmol CH4 h−1 g−1). The results indicated clearly an interaction between the microbiological processes with the observed seasonal CH4 fluctuations. However, the CH4 production is primarily substrate dependent, while the oxidation is dependent on the availability of oxygen. The temperature plays only a minor role in both processes, probably because the organisms are adapted to extreme temperature conditions of the permafrost. For the understanding of the carbon dynamics in permafrost soils, a differentiated small-scale view of the microbiological processes and the associated modes of CH4 fluxes is necessary, especially at key locations such as the Siberian Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Zoological Institute of Russian Academy of Sciences
    In:  Permafrost and Periglacial Processes, 14 (4). pp. 367-374.
    Publication Date: 2015-03-31
    Description: The microbial process of methane (CH4) production during the back-freezing of permafrost soils in autumn and the future fate of produced CH4 in the thawing phase of the following spring are not well understood. Long-term CH4 flux studies in the Lena Delta (Siberia) indicate that back-stored CH4 adds to the emission of newly-produced CH4 at the beginning of the vegetation period. Further field analysis shows that microbial CH4 production already occurs at in situ temperatures of around 1°C in the bottom layer of the soil. Therefore, a permafrost microcosm was developed to simulate the influence of the annual freezing-thawing cycles on the CH4 fluxes in the active layer of permafrost soils. Two cryostats ensure independent freezing and thawing the top and the bottom of the microcosm to simulate different field conditions. The CH4 concentration (Rhizon soil moisture samplers), the soil temperature (film platinum resistance temperature detectors [RTDs]) and the soil water content (time domain reflectometry) are analysed in different depths of the microcosm during the simulation in addition to the concentration of emitted CH4 in the headspace of the microcosm. The data obtained contribute to the understanding of microbial processes and CH4 fluxes in permafrost environments in the autumn and early winter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...