ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydrodynamics  (1)
  • Diapycnal mixing
  • Shear structure/flows
  • Tidal river
  • Turbulence
  • Woods Hole Oceanographic Institution  (2)
  • 1
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Thls report includes a compilation of hydrodynamic data obtained in New Bedford Harbor, Massachusetts (Figue 1-1), for the purpose of providing baseline information for the selection of an outfall site for a seondary sewage treatment plant for the city of New Bedford. The observations were conducted by scientists at Woods Hole Oceanographic Institution, commencing in August, 1987 and continuing though March, 1988. They included moored and shipboard measurements of fluid velocity, temperature, salinity, dissolved oxygen and turbidity. The measurement program was designated as the "New Bedford Circulation Study", or NBCS. The study indicates that there are a variety of mechanisms responsible for the transport and exchange of water-masses, of which tidal currents are the most energetic, but wind-driven flows are likely the most effective at renewing the water within the Harbor. Estimates of residence times indicate minimum residence times of less than 2 days during periods of strong winds, and maximum residence times of 4 days or more in periods of weak to moderate south winds. Vertical stratificaton is weak in the winter and moderate in the summer, and it has a notable influence on vertical mixing and on the magnitude of shear currents.
    Description: Funding was provided by Camp, Dresser and McKee, Inc. under agreement effective 24 August 1987.
    Keywords: New Bedford Harbor ; Hydrodynamics ; Physical Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 5207444 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: This report summarizes the characteristics of the idealized one-dimensional turbulent channel flow for which the 17-Meter Flume was designed, and describes a measurement program designed to determine whether the flume can in fact produce such a flow. The measured quantities include mean velocities, Reynolds stresses, turbulence intensities and velocity spectra. Measured profiles of mean velocity, Reynolds stress and turbulence intensity are consistent with previous theoretical and empirical results. Measured spectra, although consistent with expectations over a wide range of frequencies, indicate a few unexpected features, including a constant spectral density at high frequencies (possibly due to aliasing or high-frequency noise) , motion at a few well-defined high frequencies of order 10 hz (possibly due to structual vibrations), oscillations with time scales of order 30 s (possibly due to low-mode standing surface waves) and irregular motions with time scales of several minutes (possibly due to fluctuations in pump performance) . The unexpected features indicated by the spectra at high and low frequencies do not have a significant effect on mean velocities and low-order statistics, but they may be important in some applications.
    Description: Funding was provided by the Minerals Management Service under contract Number 14-12-0001-30262; Sea Grant under contract Number NA86AA-D-FG090; and the Office of Naval Research Young Investigator Program under contract Number N00014-86-K-0579.
    Keywords: Hydraulic models ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...