ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 2293-2306 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: To improve the fracture toughness of PMR-15 polyimide and to alleviate its high susceptibility to microcracking induced by thermal cycling, a thermoplastic polyimide, LARC-TPI, was incorporated to form a sequential semi-interpenetrating polymer network (semi-2 IPN). The imidization kinetics of LARC-TPI in the semi-IPNs were studied using a thermal gravimetric analyzer. Both the solvent and the glass transition temperature of the semi-IPN were found to have significant effects on the imidization kinetics. The kinetics could be modeled by a two-step reaction: the first step being a second-order reaction followed by a second step, which is a first-order diffusion-controlled reaction. Differential scanning calorimetry was chosen to investigate the curing of PMR-15 and PMR-15/LARC-TPI semi-IPNs. The curing process was well correlated by a first-order reaction kinetics, which suggested that the reverse Diels-Alder reaction of the Norbornene end group was the rate controlling step. The glass transition temperatures of these semi-IPNs were again found to play important an important role in dictating the curing kinetics. A higher proportion of LARC-TPI or a higher glass transition temperature of the semi-IPN prepolymer tended to result in a slower curing reaction. The optimum molding cycle of PMR-15 and PMR-15/LARC-TPI semi-IPNs were then determined from the obtained kinetics. © 1995 John Wiley & Sons, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 15 (1994), S. 479-487 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Graphite fiber reinforced epoxy composites normally exhibit low impact strength, poor delamination resistance, and low damage tolerance. Because delamination is a matrix-dominated failure mode, tougher matrix resins may be utilized to reduce or eliminate the adverse effects of delamination on the structural integrity of fiber composites. The effects of modifying epoxy network morphology by introducing polyurethane in the form of an interpentrating network were studied. The compatibility, toughness, and tensile properties of the matrix as well as the properties of the resultant laminates were evaluated. One of the conclusions arising was that the interpenetrating network morphology results in superior resin and composites toughness with increasing polyurethane content. However, the benefits of increased resin toughness did not necessarily translate into proportionally increased composite owing to the geomertical limitations placed on the plastic deformation zones in laminates.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...