ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 627-631 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polymer blends with varying amounts of poly(vinyl chloride) (PVC), acrylonitrile-butadiene-styrene (ABS) and polyester have been developed to produce parts with highly flexible, good impact strength, and flame retardant hinge properties. In the present work, the rheological and dynamic mechanical properties are balanced by changing the blend formulations. It is shown that blends morphology and rheology have greater impact on the dimensional stability and delamination at the surface of the molded hinge parts.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 16 (1972), S. 2013-2027 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Copolymers of vinyl chloride-vinyl acetate have been prepared with different vinyl acetate contents and molecular weights and under different polymerization conditions. A rheological study of these copolymers indicates that they behave in some ways like externally plasticized PVC. For instance, as the vinyl acetate content increases, the melt viscosity decreases, the flow activation energy decreases, and the copolymer becomes more Newtonian. However, the critical shear rate for melt fracture increases, resembling the addition of elastic polymers to PVC. An increase in copolymer molecular weight has a similar effect on the rheological behavior as in PVC, except that the flow activation energy is observed to increase rather than decrease. Decreasing the polymerization temperature affects the flow properties of the copolymer, probably due to changes in degree of branching and crystallinity. A copolymer made by the delayed addition of vinyl chloride, having a more random structure than one made by the conventional batch method, exhibited quite different flow behavior. It had a lower melt viscosity, higher critical shear rate, and lower flow activation energy.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 9 (1965), S. 1767-1785 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The melt behavior under continuous simple laminar shearing of two poly(vinyl chloride) compositions plasticized with different proportions of di-2-ethylhexyl phthalate, has been studied in a cone-and-plate rheometer. In tests at constant shear rates between 0.09 and 9.8 sec.-1, tangential stress was measured as a function of shear over a range of temperatures which was extended by the application of hydrostatic pressure to prevent break-up of the sample. When no hydrostatic pressure was applied, the normal stress difference p11 - p22 was also determined, and shear recovery was measured. In tests at constant tangential stress in the range 0.4-34 g./cm.2, shear was measured as a function of time. During constant-rate shearing, the melts - in common with other polymers - generally showed a reversible reduction in stress and recoverable strain (rheological breakdown) which increased with the stress. At sufficiently low stresses, however, the stress and strain recovery increased with shearing, and this was attributed to recovery from rheological breakdown suffered during the original milling. It is considered that shearing at first disrupts the network formed by secondary cross linkages between the molecules, and then progressively reduces the molecular entanglements to an equilibrium level determined by the conditions. There is an intervening stage in which the decline in shear recovery is temporarily arrested, for which no entirely satisfactory explanation can be offered. At moderate and high shears the strain recovery decreases with increasing shear rate.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...