ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 677-684 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Gas-agitated liquid-liquid dispersions arise in applications as diverse as direct hydrogenation processes for bitumen and coal, and the manufacture of iron and steel. The transfer of gas-phase constitutents to the dispersed liquid phase and/or elution of dispersed-phase drops have been identified as potential limiting phenomena in these processes. Consequently, mean drop size and drop size distribution are key design variables. In this paper, the impact of gas flux and the physical properties of dispersed-phase constitutents on the steady-state size distribution of liquid drops in lean liquid-liquid dispersions is quantified. The physical properties of the dispersed phase are shown to have a significant impact on drop size and drop-size distribution at low gas fluxes. Sauter mean drop size is correlated using theoretical models for drop break-up and coalescence. All results are compared with stirred tank analogues.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 598-608 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The traditional way of determining the slip velocity of molten polymers is the classic Mooney technique, which utilizes experimental data obtained from a capillary rheometer. However, measurements of the rheological properties of polymer melts in capillary flow at high shear rates are often complicated by viscous heating, which is not taken into account by this method. A data analysis procedure based on a mathematical model for nonisothermal capillary flow of molten polymers is developed. Conduction, convection, and viscous heating are included, together with the effect of wall slip. The technique provides detailed velocity and temperature fields in the die, and can be used to determine the slip velocity at high shear rates corrected for the effect of viscous heating. It is tested for the capillary flow of several polymers, including polystyrene, polypropylene, high-density, and linear low-density polyethylenes.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 1864-1871 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Experiments were carried out in both sliding plate and capillary rheometers with a polypropylene resin to determine the conditions for the onset of slip, surface, and gross melt fracture. It was found that there was no distinction between surface and gross melt fracture, which is commonly observed in the case of polyethylenes. Furthermore, the flow curves determined by using capillaries having various diameters are diameter independent implying the absence of slip. However, experiments with slit dies having rough surfaces suggest wall slip. Further analysis has shown that the effect of viscous heating masks the detection of slip from the diameter-dependency of the flow curves. The effect of a thin layer of fluoropolymer (Teflon PA, DuPont) on the critical shear stress for the onset of wall slip and melt fracture, as well as on the relationship between the wall shlip and the shear stress, were also examined. It was found that the presence of such layers increases the slip velocity, while it decreases the critical shear stress for the onset of slip.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 493-499 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The “rise time” required to achieve a steady pressure reading in a capillary rheometer operated at constant piston speed can be very long, up to several hours under certain circumstances. This phenomenon can pose a serious problem in the measurement of melt viscosity, and it would be useful to be able to estimate the rise time in the planning of experiments. Based on experiments involving several types of polyethylene, we found that the rise time increases with L/D and the amount of polymer initially in the reservoir and decreases with diameter and piston speed. When the rise time is short, melt viscoelasticity contributes to the rise time, but when it is long, melt compressibility is the dominant factor. A model was developed for the latter case, and this was found to give an accurate prediction of the rise time, given the viscosity and compressibility. The model can also be used to determine the power-law parameters from the start-up pressure trace, P(t), for a single experiment. Alternatively, if the viscosity is known, the compressibility can be inferred from a single pressure trace.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 1441-1449 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The capillary die flow of high density and linear low density polyethylenes is simulated under slip conditions to investigate the origin of sharkskin melt fracture. As suggested in the literature, it is shown that sharkskin originates at the exit of the die and is due to the acceleration (high stretching rate) of the melt as it exits the die. It is also shown that both adhesion and slip promoters eliminate surface defects by decreasing the stretching rate of the polymer melt at the exit region of the die. The effect of length-to-diameter ratio of the die on the sharkskin melt fracture is also examined. It is found that sharkskin is more pronounced in short dies which is in accord with experimental observations. Finally, it is suggested that applied pressure at the capillary exit suppresses surface defects.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 595-603 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two LLDPE resins were used in this work to determine the critical conditions for the occurrence of wall slip and melt fracture in capillary extrusion. It was found that the polymer-metal interface fails at a critical value of the wall shear stress of about 0.1 MPa and, as a result, slip occurs. At values of wall shear strees of about 0.18 MPa the extrudate surface appears to be matte, while small amplitude periodic distortions (sharkskin) appear on the surface of extrudates at wall shear stresses above 0.25 MPa. Using a special slit die, the polymer-wall interface was coated with Teflon™ in order to examine the effect of this coating on the processability of polyethylenes. It was found that use of Teflon™ promotes slip, thus reducing the power requirement in extrusion and, most importantly, eliminates sharkskin at high extrusion rates. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...