ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 33-41 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nylon 6 has been toughened by rubber particles that were dispersed within the matrix via additives that physically interact with the elastomer phase but chemically react with the polyamide phase. To disperse a core-shell impact modifier having a poly(methyl methacrylate) or PMMA shell, most of the work presented is based on the use of a styrene/acrylic acid copolymer containing 8 wt% acrylic acid, SAA8. SAA8 is miscible with PMMA and should located in the PMMA grafted chains of the impact modifier while chemically reacting with the nylon 6 matrix; hence, it should aid in both the dispersal and strenghtening the modifier-matrix interface. Microscopy and mechnical properties confirm that SAA8 does function in this way but less effectively than styrene/maleic anhydride copolymers, which are also miscible with PMMA but evidently react more effectively with the polyamides. The use of ethylene/acrylic acid copolymer for dispersal of the coreshell impact modifier and a styrene/ethylene-butene/styrene block copolymer in nylon 6 was also briefly considered. Low-temperature toughness of the blends proved to be a much more critical test of the effectiveness of such additives than room temperature impact strenght.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 1175-1188 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Recent work has shown that nylon 6/acrylonitrile-butadiene-styrene (ABS) blends can be made tough by the addition of some polymer additives that are chemically reactive with nylon 6 and physically compatible with the styrene-acrylonitrile copolymer (SAN) phase of ABS. Imidized acrylic polymers (IA) represent a successful example of such additives that improve the dispersion of ABS in the nylon 6 matrix and render the blends tough. This article examines the possibility of toughening nylon 6 with ethylene/propylene/diene elastomer grafted with SAN copolymer (EPDM-g-SAN). This EPDM-g-SAN consists of 50% rubber and 50% SAN by weight. However, it was found that the same IA that works well to disperse ABS materials of similar rubber content is not as effective for EPDM-g-SAN, primarily because the EPDM forms the continuous phase, not SAN, and, thus, interfaces with nylon 6 during melt blending. Maleated elastomers like maleic anhydride grafted ethylene-propylene copolymer (EPR-g-MA) and styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS-g-MA) were more effective for dispersing EPDM-g-SAN in the nylon 6 matrix than IA. Various mechanisms that improve the dispersion are discussed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 1467-1477 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Rubber particle size is an important issue in toughening of engineering thermoplastics. Use of core-shell impact modifiers offers the advantage of a predetermined particle size; however, these particles must be appropriately dispersed in the matrix polymer to be effective for toughening. Recent work has shown that core-shell modifiers having a poly(methyl methacrylate) (PMMA) shell can be dispersed in nylon 6 with the aid of certain styrene/maleic anhydride (SMA) copolymers. These materials are miscible with PMMA and can also react with polyamides during melt processing. Enhanced interaction between the rubber and matrix phases as a result of the formation of in situ graft copolymers at the interface was suggested to contribute to the improved dispersion. However, rheological issues also influence the dispersion of core-shell modifier particles in the matrix. This article examines the influence of the matrix melt viscosity on the dispersion of the core-shell particles in the nylon 6 matrix and the resulting mechanical properties of the blends using four nylon 6 materials of different molecular weights. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 61 (1996), S. 1423-1430 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The two reactive systems using cellulosic fiber reinforcement emphasized in this article are twin screw extrusion maleation of polypropylene (PP) and structural reaction injection molding (SRIM). Both simultaneous and sequential compounding of sweet gum wood fiber (WF) with maleation were studied. Similar PP/WF mechanical properties are observed for simultaneous and sequential compounding. However, the melt viscosity of the simultaneous compounding and maleation deceases initially compared to neat polypropylene, whereas the sequential process does not have an initial decrease. After the initial response, the melt viscosity and shear thinning characteristics in both systems increase with WF content compared to their respective low WF behavior. The cellulosic reinforcement in the SRIM studies include: cheesecloth; and nonwoven mats formed separately from fiber bundles of sugar cane rind, kenaf, and sweet gum wood. In the SRIM system the modulus and tensile strength of the neat polyurea/urethane increases with cellulose content, independent of cellulosic source; the modulus doubles with only 4% cellulose, and the tensile strength doubles with only 7% cellulose. However, the elongation to break decreases from 300 to 30% with only 4% cellulose. Cellulose is as reactive with isocyanate in SRIM as are the commercial polyols. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...