ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 2123-2132 
    ISSN: 0001-1541
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recoverd, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided. Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient mode. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half than of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 265-272 
    ISSN: 0006-3592
    Schlagwort(e): recombinant fusion protein ; chemical cleavage ; hydroxylamine ; insulin-like growth factor-I ; protein modification ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The application of gene fusion technology for the production of heterologous proteins in Escherichia coli has required the development of specific cleavage methods to separate the coexpressed fusion protein partner from the protein of interest. When hydroxylamine is used to cleave Asn-Gly fusion protein linkages, undesirable chemical modification of asparagine and glutamine amino acids can also occur. In this study, hydroxylamine cleavage conditions were modified to minimize unwanted chemical heterogeneity that occurred during the cleavage of the fusion protein [Met1]-pGH(1-11)-Val-Asn-IGF-I (Long-IGF-I). The cleavage reaction was shown to be dependent on the hydroxylamine concentration, temperature, and pH. Optimal cleavage conditions were identified that resulted in very low levels of chemical heterogeneity, but under these mild conditions that cleavage of the labile Asn-Gly bond was reduced. Therefore, the reaction was further modified to improve the yield of IGF-I while minimizing chemical heterogeneity. The yield of unmodified IGF-I was improved from less than 25% to greater than 70%. Analysis of the heterogeneity produced using the modified cleavage technique showed that Asn26 was converted to a hydroxamate. This variant was characterized in refolding and biological assays where it was equivalent to IGF-I. To further assess the effectiveness of the modified cleavage technique and to evaluate the potential for process scale-up, a gram-scale cleavage reaction of Long-IGF-I was carried out. The process yielded IGF-I with a low level of chemical heterogeneity that was easily removed by ion-exchange chromatography. Moreover, this work shows that the production of unmodified IGFs using hydroxylamine cleavage of fusion proteins is facilitated using the mild cleavage reaction. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...