ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Corynebacterium glutamicum mutants  (1)
  • Engineering  (1)
  • Wiley-Blackwell  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 2837-2862 
    ISSN: 0029-5981
    Keywords: special boundary integral formulation ; design sensitivity analysis (DSA) ; direct differentiation approach (DDA) ; three-dimensional conduction heat transfer ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A special boundary integral formulation had been proposed to analyse many engineering problems of conduction heat transfer in complex three-dimensional geometries (closely spaced surface and circular hole in infinite domain or simple modification of it) by Rezayat and Burton. One example of such geometries is the mold sets in the injection molding process. In this paper, an efficient and accurate approach for the design sensitivity analysis (DSA) is presented for these kinds of problems in the similar complex geometries using the direct differentiation approach (DDA) based on the above special boundary integral formulation. The present approach utilizes the implicit differentiation of the boundary integral equations with respect to the design variables (radii and locations of circular holes) to yield the sensitivity equations. A sample problem (heat transfer of injection molding cooling system) is solved to demonstrate the accuracy of the present sensitivity analysis formulation. Although the techniques introduced here are applied to a particular problem in heat transfer of injection molding cooling system, their potential application is quite broad.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 864-879 
    ISSN: 0006-3592
    Keywords: Corynebacterium glutamicum mutants ; transconjugation ; intracellular flux analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiology and central carbon metabolism of Corynebacterium glutamicum was investigated through the study of specific disruption mutants. Mutants deficient in phosphoenolpyruvate carboxylase (PPC) and/or pyruvate kinase (PK) activity were constructed by disrupting the corresponding gene(s) via transconjugation. Standard batch fermentations were carried out with these mutants and results were evaluated in the context of intracellular flux analysis. The following were determined. (a) There is a significant reduction in the glycolytic pathway flux in the pyruvate kinase deficient mutants during growth on glucose, also evidenced by secretion of dihydroxyacetone and glyceraldehyde. The resulting metabolic overflow is accommodated by the pentose phosphate pathway (PPP) acting as mechanism for dissimilating, in the form of CO2, large amounts of accumulated intermediates. (b) The high activity through the PPP causes an overproduction of reducing power in the form of NADPH. The overproduction of biosynthetic reducing power, as well as the shortage of NADPH produced via the tricarboxylic acid cycle (as evidenced by a reduced citrate synthase flux), are compensated by an increased activity of the transhydrogenase (THD) enzyme catalyzing the reaction NADPH + NAD+↔NADP+ + NADH. The presence of active THD was also confirmed directly by enzymatic assays. (c) Specific glucose uptake rates declined during the course of fermentation and this decline was more pronounced in the case of a double mutant strain deficient in both PPC and PK. Specific ATP consumption rates similarly declined during the course of the batch. However, they were approximately the same for all strains, indicating that energetic requirements for biosynthesis and maintenance are independent of the specific genetic background of a strain. The above results underline the importance of intracellular flux analysis, not only for producing a static set of intracellular flux estimates, but also for uncovering changes occurring in the course of a batch fermentation or as result of specific genetic modifications. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:864-879, 1997.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...