ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (1)
  • Wiley-Blackwell  (1)
Collection
Publisher
  • Wiley-Blackwell  (1)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 13 (1973), S. 102-112 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Filling cold mold cavities with hot polymer melts at high pressures is of great practical interest. The transport approach to this process of solving the general equations of change with suitable equations of state to describe the flowing material has been largely ignored. No analytic solution is possible, and the non-steady state flow adds a dimension which makes digital computation discouraging because of the core storage and execution time requirements.The mold filled in this simulation is a disk which hot polymer melt enters through a tubular entrance located at the center of the top plate. The tube is 2.54 cm. long and has a radius of 0.24 cm. The plate separation and outer radius of the disk cavity may be varied. A constant pressure applied at the entrance of the tube causes the flow. The cavity walls are kept at various low temperatures. The reported results are for rigid polyvinyl chloride (PVC).The general transport equations, i.e. continuity, momentum, and energy, for a constant density power law fluid are used to solve the flow problem. Convergence to the differential solutions is guaranteed but since a lower limit was imposed on the time increment by the core storage limit of the computer facilities (27K) and long execution times, all results are semiquantitative for the problem as stated.Using the results obtained it is possible to predict “fill times”. The formation of a frozen polymer skin as the cavity fills may be followed via the velocity profiles. The temperature profiles which reflect cooling and the amount of viscous heat generated provide the basis for studying resin thermal degradation effects.Finally, because so much of the total pressure drop is disispated in the entrance tube, and so much viscous heat is generated there, this study indicates that the design of the gate and runner system is perhaps the most important facet of success in mold filling.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...