ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Two-dimensional polyacrylamide gel electrophoresis  (29)
  • Chemical Engineering  (13)
  • Physical Chemistry  (13)
  • Wiley-Blackwell  (55)
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 861-867 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Commercial polysulfone/polycarbonate (PSU/PC) polymer blends were reprocessed up to five times to determine the influence that reprocessing has on their structure and physical properties. All the high strain properties, mainly ductility, significantly decreased under harsh processing conditions, such as five cycles at 320°C. The results of reprocessing the blends at 320°C have been compared with results at a lower temperature and also with those of the separate components with the aim of clarifying the origin of the degradation. These results plus Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis, and melt flow index measurements (MFI) indicate that the presence of the two polymers together clearly decreases the resistance to degradation of each component. Moreover, degradation under the stated conditions is mainly thermal and does not change the chemical nature of the blends. However, a clear decrease in molecular weight was observed both by viscosimetry and MFI measurements as was a shift to higher temperatures of the low temperature secondary transition of both PC and PSU. Both molecular weight and secondary transition changes usually deteriorate mechanical properties but not in the degree observed here. This probably means that the fine and difficult-to-observe structure of the blend has also changed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1243-1253 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The degree of hydrogen bonding and macroscopic thermodynamic properties for pure and mixed fluids are predicted with the hydrogen bonding lattice fluid (LFHB) equation of state over a wide range in density encompassing the gas, liquid and supercritical states. The model is successful for molecules forming complex self-associated networks, in this case pure methanol, ethanol, and water, and the mixture 1-hexanol-SF6. In supercritical water, significant hydrogen bonding is still present despite all the thermal energy and is highly pressure- and temperature-dependent. A fundamental description of pressure and temperature effects on hydrogen bonding is presented for a well-defined case, the formation of a complex between a donor and acceptor in an inert solvent, where no self-association is present. The partial molar enthalpy and volume change on complexation both become pronounced near the critical point, where the density is highly variable with temperature and pressure.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 368-376 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A proposed theoretical model describes colloids deposition on a membrane surface accounting for surface interactions. A mass-transfer equation links the deposition rate to hydrodynamic conditions (permeation and tangential flow through a boundary layer thickness, δ) and to physicochemical properties of the suspension (diffusion, D, and potential barrier between particles, VB). This equation predicts the existence of a critical flux, Jcrit, for ultrafiltration, reverse osmosis, or microfiltration of large-size colloids as: \documentclass{article}\pagestyle{empty}\begin{document}$$ J_{crit} = \frac{D}{\delta}ln \left({\frac{{V_B}}{\delta}} \right) $$\end{document} Some of the trends observed when processing protein solutions are explained by this model. Previous experimental data for various colloids or our data with a clay suspension in the presence of electrolytes are also compared to predictions of our model. It explains the “flux anomaly” for particle sizes between 10 nm and 1 μm.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 2069-2079 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: During the IML-2 space shuttle mission, the RAMSES instrument was operated in the Spacelab module. This continuous-flow electrophoresis device performs separation and purification of protein solutions on a preparative scale. Samples containing artificial mixtures of pure proteins were used to test the capabilities of the device, and useful separations were obtained for proteins having a mobility difference of only 3 × 10-9 m2·V-1·s-1. Operating conditions that cannot be applied on earth were explored for two different sample concentrations, one of which is too high to allow treatment on earth. It agrees well with a previously published numerical model in that the main cause of loss in resolution in this process is the electrohydrodynamic spreading of the protein filaments.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 31 (1985), S. 1563-1565 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 245-252 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A study has been made of property optimization of a composite based on low density polyethylene and polypropylene (PP) blend matrices with talc modified by a titanate coupling agent. Analysis shows that the flexural properties improve with increasing content of both talc and polypropylene. However, the tensile moduli show a different behavior. Tensile strength is hardly affected by the filler content at PP percentages in the matrix above 50 percent. The surface modified talc gives rise to higher mechanical properties than the unmodified talc. This improvement is more noticeable as talc and PP percentages in the composite is increased. Scanning electron microscopy has shown the effect of the coupling agent at the filler/polymer matrix interphase and the greater affinity between talc and polypropylene.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 79-86 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An abbreviated review of the current state of knowledge of polymer interfacial phenomena is given. Classical thermodynamics treats the interfacial zone (the interphase) as a “black box” and yields rigorous relationships among interfacial quantities. A recent reformulation of interphase thermodynamics, which eliminates the use of a Gibbs dividing surface, is shown to be an invaluable tool for investigating interfacial properties. Microscopic theories, such as the gradient theory, yield more details about what is in the black box, but the information is only approximate. The gradient theory has been used to: (1) relate the surface tension of a polymer liquid to its isothermal compressibility, (2) develop a quantitative theory of polymer liquid surface tension, and (3) determine the interfacial tension between two immiscible polymer liquids. The gradient theory will be shown to be in harmony with the microscopic theory of Helfand and co-workers although the latter treats polymer interfaces from a completely different point of view.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 1055-1055 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 598-600 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper presents an overview of the subject of phase separation in polymer blends with an emphasis on the thermodynamic stability criteria for phase stability and the classical thermodynamic and microscopic description of polymer interfaces.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 4 (1991), S. 141-148 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The influence of solvation on the Z - E isomerization process of three representative molecules of simple push-pull ethylenes [H2N(H)C1=C2(H)R = NO2, COH and CN] derived from aminoethylene was investigated by means of RHF-SCF ab initio calculations at the 3-21 + G level. Solute-solvent interactions were modelled by a cavity model. The shape of the cavity is based on electronic isodensity surfaces. By using an ellipsoidal cavity very close to the isodensity surface, the perturbation due to the solvent takes an analytical form which is incorporated into the Hartree-Fock equations and leads to efficient quantum chemical computations. The polarization of the solutes under the influence of the solvent is noticeable and was analysed in detail. Similarly, the barriers to internal rotations are substantially modified by the solvent: the barrier around the C=C double bond is appreciably decreased in the thermal mechanism whereas its lowering is less important in the anionic mechanism; in contrast, the barrier around the C-1—N bond is slightly increased. The variation of the barriers with the nature of the acceptor group is fairly well reproduced by the computations. The electronic structure of the push-pull ethylene molecules and the modifications of this structure under the influence of the solvent are analysed in detail.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...