ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Chemistry  (3)
  • AFT1  (1)
  • Aircraft Propulsion and Power
  • Condensed Matter: Electronic Properties, etc.
  • ddc:330
  • Wiley-Blackwell  (4)
  • Biology  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 1477-1482 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 9 (1994), S. 177-184 
    ISSN: 0884-3996
    Keywords: Photoproteins ; calcium ; organelles ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We have recently developed a new method for monitoring Ca2+ concentrations in defined cell compartments. The cDNA encoding the Ca2+-sensitive photoprotein aequorin has been modified in order to include specific targeting sequences and expressed in eukaryotic cells; the recombinant protein, specifically located inside the cells, has allowed the direct study of mitochondrial and nuclear Ca2+ concentrations in living cells. The principles, and the application, of this new methodology are discussed in this article.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 13 (1998), S. 371-378 
    ISSN: 0884-3996
    Keywords: bioluminescence ; luciferase ; ATP ; immobilization ; glass ; poly-L-lysine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The bioluminescent reaction catalysed by firefly luciferase has become widely established as an outstanding analytical system for assay of ATP. When used in solution, luciferase is unstable and cannot be re-used, a problem that can be partially circumvented by immobilizing the enzyme on solid substrates. Transparent glass is especially advantageous over alternative immobilizing matrices, since it allows most of the emitted photons to be detected. We report a new method for luciferase immobilization on glass which does not require prior silanization and glutaraldehyde activation, thus saving preparation time and minimizing enzyme inactivation. Our method is based on the co-immobilization by adsorption of luciferase (from a firefly lantern extract) and poly-L-lysine (PL) on non-porous glass strips. Luciferase immobilized in this way exhibits minimal variations in intersample activity, high sensitivity for ATP detection (linear luminescence responses down to 50 nmol/L) and good stability (full activity for at least 60 days when stored at -80°C). PL-mediated immobilization of luciferase on glass strips provides an attractive strategy for the design of specific ATP biosensors, with potential in industry, environmental screening, medicine and biological research. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: AFT1 ; transcriptional factor ; iron uptake ; phosphorylation ; respiratory growth ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced levels of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest at the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirements for cell growth. © John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...