ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: A multiyear mooring record (2007–2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Hydrographic and stable isotope (δ18O) data from 4 summer surveys in the Laptev Sea are used to derive fractions of sea-ice meltwater and river water. Sea-ice meltwater fractions are found to be correlated to river water fractions. While initial heat of river discharge is too small to melt the observed 0-158 km3 of sea-ice meltwater, arctic rivers contain suspended particles (SPM) and colored dissolved organic material (CDOM) that preferentially absorb solar radiation. Accordingly heat content in surface waters is correlated to river water fractions. But in years when river water is largely absent within the surface layer absolute heat content values increase to considerably higher values with extended exposure time to solar radiation and sensible heat. Nevertheless no net sea-ice melting is observed on the shelf in years when river water is largely absent within the surface layer. The total freshwater volume of the central-eastern Laptev Sea (72-76°N, 122-140°E) varies between ~1000-1500 km3 (34.92 reference salinity). It is dominated by varying river water volumes (~1300-1800 km3) reduced by an about constant freshwater deficit (~350-400 km3) related to sea-ice formation. Net sea-ice melt (~109-158 km3) is only present in years with high river water budgets. Intermediate to bottom layer (〉25 salinities) contain ~60% and 30% of the river budget in years with low and high river budgets, respectively. The average mean residence time of shelf waters was ~2-3 years during 2007-2009.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-13
    Description: A multi-year mooring record (2007-2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export, and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...