ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-24
    Description: In this study, multi-phase borosilicate-based glass-ceramics were investigated as an alternative waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO 3 in borosilicate glass translates into a maximum waste loading in the range 15–20 mass%. Glass-ceramics provide the opportunity to target chemically durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite that will incorporate MoO 3 as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels twice the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Here, glass-ceramics were synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B 2 O 3 , Al 2 O 3 , CaO , and SiO 2 by slow-cooling from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. Only two of the targeted phases, powellite and oxyapatite, were observed, along with lanthanide-borosilicate and cerianite. Results of this initial investigation show promise of glass-ceramics as a potential waste form to replace single-phase borosilicate glass.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...