ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2016-04-05
    Description: The injection of phytohaemagglutinin (PHA) and sampling of blood are widely used in studies of wild vertebrates to assess components of immune and endocrine function and health state and to obtain genetic material. Despite the pervasive use of these techniques in the life sciences, their potential effects on survival are rarely considered. For example, whether injection of the immunogen PHA into body parts critical for locomotion (e.g., the prepatagium, or wing web, in birds) affects survival has not been tested. Here, we test whether injection of PHA into the wing web and blood sampling from nestling house wrens affects their subsequent recruitment and survival as breeding adults. Capture-mark-recapture analysis on a large sample of young ( N  =   20,152 fledglings from 3959 broods) treated over 10 years revealed that neither PHA injection nor blood sampling affected individual survival and detection probability. Recruitment as a breeder varied among years, but this variation was not attributable to sampling effort, or the percent of all adults identified at the nest during a given year. Variation in the percent of adults identified was primarily attributable to the effect of nest depredation on our ability to capture nesting pairs. Our results indicating lack of an effect of blood sampling and immune stimulation on survival are encouraging, but we recommend further work to assess the potential negative effects of all commonly used techniques on the survival of study subjects in the wild, including the potential costs associated with mounting various immunological responses. We test whether sampling blood or inducing an immune response affects the survival of study subjects. Analysis of over 20,000 birds reveals no effect of bleeding or immunostimulation on survival.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-24
    Description: Reactive chemical transport plays a key role in geological media, across scales from pores to an aquifer. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully-designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.
    Print ISSN: 8755-1209
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-09
    Description: Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens ( Troglodytes aedon ) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-23
    Description: The hypoxic and acidic tumor environment necessitates intracellular pH (pH i ) regulation for tumor progression. Carbonic anhydrase IX (CA IX; hypoxia-induced) is known to facilitate CO 2 export and generate HCO 3 - in the extracellular tumor space. It has been proposed that HCO 3 - is re-captured by the cell to maintain an alkaline pH i . A diverse range of HCO 3 - transporters, coupled with a lack of a clear over-expression in cancers have limited molecular identification of this cellular process. Here we report that hypoxia induces the Na + /HCO 3 - co-transporter (NBCe1) SLC4A4 mRNA expression exclusively in the LS174 colon adenocarcinoma cell line in a HIF1α dependent manner. HCO 3 - dependent pH i recovery observations revealed the predominant use of an NBC mechanism suggesting that reversal of a Cl - /HCO 3 - exchanger is not utilized for tumor cell pH i regulation. Knockdown of SLC4A4 via shRNA reduced cell proliferation and increased mortality during external acidosis and spheroid growth. pH i recovery from acidosis was partially reduced with knockdown of SLC4A4. In MDA-MB-231 breast cancer cells expressing high levels of SLC4A4 compared to LS174 cells, SLC4A4 knockdown had a strong impact on cell proliferation, migration, and invasion. SLC4A4 knockdown also altered expression of other proteins including CA IX. Furthermore the Na + /HCO 3 - dependent pH i recovery from acidosis was reduced with SLC4A4 knockdown in MDA-MB-231 cells. Combined our results indicate that SLC4A4 contributes to the HCO 3 - transport and tumor cell phenotype. This study complements the on-going molecular characterization of the HCO 3 - re-uptake mechanism in other tumor cells for future strategies targeting these potentially important drug targets. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-09
    Description: Evidence for sediment transport and erosion by wind is widespread over the surface of Mars today and was likely a major geomorphic process for much of its geological past. Although Martian surface features resembling aeolian dunes and ripples have been recognized since the Mariner and Viking missions, such features have been interpreted previously as active, indurated, or exhumed sedimentary forms. Here we report evidence based on High Resolution Imaging Science Experiment images that show some megaripple forms are eroded into cohesive substrate rather than being composed of loose granular material or fossilized dunes. Exposure of stratigraphic continuity within layered, cohesive material extending crest to trough through features with mean wavelengths of 18 to 51 m demonstrates the primarily erosional formation of what we term periodic bedrock ridges (PBRs). Hence some surfaces on Mars previously considered to be covered by wind-deposited material are actually wind-carved exposures that offer windows into Martian history. PBRs lack the distinctive streamlining associated with wind-parallel yardangs and comparison of PBR orientation to yardangs, megayardangs, and active sedimentary dunes in the same vicinity confirm that these PBRs formed transverse to prevailing winds. Observed wavelengths of PBRs are comparable to those predicted by a simple model for erosional wavelengths of periodic transverse bed forms owing to the spacing of flow separations within the flow. Recognition of these transverse aeolian erosional forms brings up the question of how widespread Martian PBRs are and how many have been misinterpreted as active or indurated (fossilized) sedimentary dunes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-22
    Description: This paper concerns a new modeling approach to multicomponent NAPL dissolution and transport, based on analytic solutions and Laguerre series. This approach allows virtually any of the numerous existing 1D analytic transport solutions in the literature to be coupled with arbitrary boundary conditions stemming from nonlinear NAPL dissolution, as dictated by Raoult's Law. A computer implementation of this approach to coupled dissolution and transport in parallel fractures—which no other screening tool known to the authors covers—is presented. This is verified against an existing analytic transport solution that assumes a constant boundary condition. Subsequently, the model is demonstrated via a study of separation of PAH and phenolic plumes generated by dissolution of creosote, using the new computer implementation. The PAH and phenolic constituents of creosote strongly differ in both their dissolution and their transport behavior, and this is shown to necessitate the use of a tool that can account for both processes, such as the one developed here. We also find the possibility of PAH and phenolic plumes becoming entirely disjoint.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-18
    Description: Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. To understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, we develop a continuous time random walk-based interpretation framework which is flow-field agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e. subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3D numerical model. Finally, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-10
    Description: This paper characterises the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterisation of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-10
    Description: A wide variety of analytic solutions have been developed for 1D contaminant transport, but to date the author is aware of none modeling a decay chain in parallel discrete fractures in porous media. In this note, the derivation is presented for a two-species first-order decay chain in such an environment, with an arbitrary concentration history specified up-gradient, fracture advection, and diffusion into the porous matrix. The solution is presented in brief, followed by corroboration of its numerical implementation against two different existing numerical codes. An appendix contains a detailed derivation of the solution, and a Mathematica notebook that implements it and may be used by practitioners is enclosed as supplementary material.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...