ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-05
    Description: Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast. However, for hydrological forecasting, their low resolution currently limits their use to large watersheds. To bridge this gap, various implementations of a spatial statistical downscaling method were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 × 70-km resolution down to 6 × 4-km while increasing each pixel's rainfall variance and preserving its original mean. This was applied for nine consecutive days of summer 2009 with strong rain events over Quebec City, Canada. For comparison purposes, simpler methods were also implemented such as the bilinear interpolation, which disaggregates global forecasts without modifying their variance. The meteorological products were evaluated, using different scores and diagrams, against observed values taken from Quebec City rain gauge network. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using the variance-enhancing method were of similar quality than bilinear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared with the bilinear interpolation, which is a decisive advantage. Therefore, there is an interest in implementing variance-enhancing methods to disaggregate global ensemble rainfall forecasts. © 2012 Her Majesty the Queen in right of Canada.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Description: One of the most important parameters for spring runoff forecasting is the snow water equivalent on the watershed, often estimated by kriging using in situ measurements, and in some cases by remote sensing. It is known that kriging techniques provide little information on uncertainty, aside from the kriging variance. In this paper, two approaches using Bayesian hierarchical modelling are compared with ordinary kriging; Bayesian hierarchical modelling is a flexible and general statistical approach that uses observations and prior knowledge to make inferences on both unobserved data (snow water equivalent on the watershed where there is no measurements) and on the parameters (influence of the covariables, spatial interactions between the values of the process at various sites). The first approach models snow water equivalent as a Gaussian spatial process, for which the mean varies in space, and the other uses the theory of Markov random fields. Although kriging and the Bayesian models give similar point estimates, the latter provide more information on the distribution of the snow water equivalent. Furthermore, kriging may considerably underestimate interpolation error. Copyright © 2006 Environment Canada. Published by John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-15
    Description: Automatic precipitation gauges tend to underestimate solid precipitation in the presence of wind. Loss as a function of wind speed is typically evaluated by comparing the gauge with a more accurate measurement made using a double-fence intercomparison reference gauge (DFIR). For small precipitation events, small errors in the observations can induce large errors in the 'catch' ratio, i.e. the ratio of the automatic gauge measurement to the DFIR observation. For this reason, precipitation events of less than 3 mm are typically discarded before performing the regression analysis. This can mean discarding more than 90% of the observations. This paper shows how the method of weighted least squares can be used to perform a regression analysis that can take into account the whole sample to provide a more accurate estimation of the relationship between the catch ratio and the wind speed. This methodology is then used to obtain an adjustment curve for a shielded Geonor T-200B precipitation gauge in Northern Québec. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...