ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • 1
    Publication Date: 2017-09-21
    Description: Cascade contributions to geocoronal Balmer α airglow line profiles are directly proportional to the Balmer β/α line ratio and can therefore be determined with near simultaneous Balmer β observations. Due to scattering differences for solar Lyman β and Lyman γ (responsible for the terrestrial Balmer α and Balmer β fluorescence, respectively) there is an expected trend for the cascade emission to become a smaller fraction of the Balmer α intensity at larger shadow altitudes. Near coincident Balmer α and Balmer β data sets, obtained from the Wisconsin Hα Mapper (WHAM) Fabry–Perot, are used to determine the cascade contribution to the Balmer α line profile, and to show, for the first time, the Balmer β/α line ratio, as a function of shadow altitude. We show that this result is in agreement with direct cascade determinations from Balmer α line profile fits obtained independently by high resolution Fabry–Perot at Pine Bluff, WI. We also demonstrate with radiative transport forward modeling that a solar cycle influence on cascade is expected, and that the Balmer β/α line ratio poses a tight constraint on retrieved aeronomical parameters (such as hydrogen's evaporative escape rate and exobase density). Index Terms: Hydrogen Geocorona, Balmer-alpha Line Profile, Fabry–Perot Interferometry
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-18
    Description: A new, high resolution field-widened spatial heterodyne spectrometer (FW-SHS) designed to observe geocoronal Balmer α (Hα, 6563 Å) emission was installed at Pine Bluff Observatory (PBO) near Madison, Wisconsin. FW-SHS observations were compared with an already well-characterized dual-etalon Fabry-Perot Interferometer (PBO FPI) optimized for Hα, also at PBO. The FW-SHS is a robust Fourier transform instrument that combines a large throughput advantage with high spectral resolution and a relatively long spectral baseline (~10x that of the PBO FPI) in a compact, versatile instrument with no moving parts. Coincident Hα observations by FW-SHS and PBO FPI were obtained over similar integration times, resolving powers (~67,000 & 80,000 at Hα) and fields-of-view (1.8° and 1.4°, respectively). First light FW-SHS observations of Hα intensity and temperature (Doppler width) vs. viewing geometry (shadow altitude) show excellent relative agreement with the geocoronal observations previously obtained at PBO by FPI. The FW-SHS has a 640 km/s (14 Å) spectral bandpass, and is capable of determining geocoronal Hα Doppler shifts on the order of 100 m/s with a temporal resolution on the order of minutes. These characteristics make the FW-SHS well suited for spectroscopic studies of relatively faint (~12-2 R), diffuse-source geocoronal Hα emission from Earth's upper thermosphere and exosphere and the interstellar medium in our Galaxy. Current and future FW-SHS observations extend long-term geocoronal hydrogen observation data sets already spanning three solar minima. This paper describes the FW-SHS first light performance and Hα observational results collected from observing nights across 2013 and 2014.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...