ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-28
    Description: Sea level rise is perceived as a major threat to the densely populated coast of the Bay of Bengal. Addressing future rise requires understanding the present-day sea level budget. Using a novel method and data from the Gravity Recovery and Climate Experiment (GRACE) satellite, we partition altimetric sea level rise (6.1 mm/a over 2002–2014) into mass and steric components. We find that current mass trends in the Bay of Bengal are slightly above global mean, while steric trends appear much larger: 2.2–3.1 mm/a if we disregard a residual required to close the budget, and 4.3–4.6 mm/a if, as an upper bound, we attribute this residual entirely to steric expansion. Our method differs from published approaches in that it explains altimetry and GRACE data in a least squares inversion, while mass anomalies are parameterized through gravitationally self-consistent fingerprints, and steric expansion through EOFs. We validate our estimates by comparing to Argo and modeling for the Indian Ocean, and by comparing total water storage change (TWSC) for the Ganges and Brahmaputra basins to the conventional GRACE approach. We find good agreement for TWSC, and reasonable agreement for steric heights, depending on the ocean region and Argo product. We ascribe differences to weaknesses of the Argo data, but we also find the inversion to be to some extent sensitive with respect to the EOFs. Finally, combining our estimates with CMIP5-simulations, we estimate that Bay of Bengal absolute sea level may rise for additional 37 cm under the RCP4.5 scenario and 40 cm under RCP8.5 until 2050, with respect to 2005. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-08
    Description: Tsunamis often travel long distances without losing power and severely devastate some coastal areas while leaving others with little damage. This unpredictable situation has been a major challenge for accurate and timely tsunami forecasting to facilitate early-warning and possible evacuations of affected coastal communities without disturbing the lives of others. Here we show evidence from satellite altimetry observations of the 2011 Tohoku-Oki earthquake-induced tsunami that sheds light on this issue. Three satellites observed the same tsunami front, and for the first time, one of them recorded a tsunami height about twice as high as that of the other two. Model simulations, based on the GPS-derived earthquake source and constrained by measurements of seafloor motions near the hypocenter, confirm that the amplified tsunami is one of several jets formed through topographic refraction when tsunamis travel along ocean ridges and seamount chains in the Pacific Ocean. This process caused the tsunami front to merge as it propagates, resulting in the doubling of the wave height and destructive potential in certain directions. We conclude that the potential of merging tsunamis should be emphasized in mapping tsunami hazards and assessing risk levels at key coastal facilities.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-13
    Description: Two-dimensional (2-D) satellite imagery has been increasingly employed to improve prediction of floodplain inundation models. However, most focus has been on validation of inundation extent, with little attention on the spatial variations of water elevation and slope. The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR) imagery offers unprecedented opportunity for quantitative validation of surface water heights and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya Basin Floodway System, Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the purpose of demonstrating the utility of InSAR in 2-D floodplain model calibration. Two schemes calibrating Manning's roughness in channels and floodplains are compared. First, the model is calibrated in terms of water elevations at a single in situ gage during a 62-d simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR 2D imagery acquired on 16 April 2008 and 1 June 2009, an interval of 46 d. The best-fit model shows that the mean absolute error is 5.7 cm/46 d for InSAR water level calibration. Daily storage changes within the ∼230-km2 model area are also calculated to be on the order of 107 m3 d−1 during high water of the modeled period. The favorable comparison between both approaches demonstrates the feasibility of SAR interferometry for 2-D hydrodynamic model calibration and for improved understanding of complex floodplain hydrodynamics.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-08
    Description: We present a method of directly estimating surface mass anomalies at regional scales using satellite-to-satellite K-band Ranging (KBR) data from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. Geopotential differences based primarily on KBR measurement are derived using a modified energy integral method with an improved method to calibrate accelerometer measurements. Surface mass anomalies are computed based on a downward continuation process, with optimal regularization parameters estimated using the L-curve criterion method. We derive the covariance functions in both space- and space-time domains and use them as light constraints in the regional gravity estimation process in the Amazon basin study region. The space-time covariance function has a time-correlation distance of 1.27 months, which is evident that observations between neighboring months are correlated and the correlation should be taken into account. However, most of the current GRACE solutions did not consider such temporal correlations. In our study, the artifact in the regional gravity solution is mitigated by using the covariance functions. The averaged commission errors are estimated to be only 6.86% and 5.85% for the solutions based on the space-covariance function (SCF) and the space-time covariance function (STCF), respectively. Our regional gravity solution in the Amazon basin study region, which requires no further post-processing, shows enhanced regional gravity signatures, reduced gravity artifacts, and the gravity solution agrees with NASA/GSFC's GRACE MASCON solution to about 1 cm RMS in terms of water thickness change over the Amazon basin study region. The regional gravity solution also retains the maximum signal energy while suppressing the short wavelength errors.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-05
    Description: Spaceborne gravimetry data from the Gravity Recovery And Climate Experiment (GRACE) are processed using spatio-spectral Slepian localization analysis enabling the high-resolution detection of permanent gravity change associated with both coseismic and postseismic deformation resulting from the great 11 March 2011 Mw 9.0 Tohoku-Oki earthquake. The GRACE observations are then used in a geophysical inversion to estimate a new slip model containing both coseismic slip and after-slip. The GRACE estimated moment for the total slip, up to the end of July 2011 is estimated as (4.59 ± 0.49) × 1022 N m, equivalent to a composite Mw of 9.07 ± 0.65. If the moment for the Tohoku-Oki main shock is assumed to be 3.8 × 1022 N m, the contribution from the after-slip is estimated to be 3.0 × 1021–12.8 × 1021 N m, in good agreement with a postseismic slip model inverted from GPS data. We conclude that GRACE data provide an independent constraint to quantify co- and post-seismic deformation for the Tohoku-Oki event.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-03
    Description: The Tibetan Plateau (TP), the highest and largest plateau in the world, with complex and competing cryospheric-hydrologic-geodynamic processes, is particularly sensitive to anthropogenic warming. The quantitative water mass budget in the TP is poorly known. Here we examine annual changes in lake area, level, and volume during 1970s − 2015. We find that a complex pattern of lake volume change during 1970s − 2015: a slight decrease of –2.78 Gt yr -1 during 1970s − 1995, followed by a rapid increase of 12.53 Gt yr -1 during 1996 − 2010, and then a recent deceleration (1.46 Gt yr -1 ) during 2011 − 2015. We then estimated the recent water mass budget for the Inner TP, 2003 − 2009, including changes in terrestrial water storage (TWS), lake volume, glacier mass, snow water equivalent (SWE), soil moisture, and permafrost. The dominant components of water mass budget, namely changes in lake volume (7.72 ± 0.63 Gt yr -1 ) and groundwater storage (5.01 ± 1.59 Gt yr -1 ), increased at similar rates. We find that increased net precipitation contributes the majority of water supply (74%) for the lake volume increase, followed by glacier mass loss (13%), and ground ice melt due to permafrost degradation (12%). Other term such as SWE (1%) make a relatively small contribution. These results suggest that the hydrologic cycle in the TP has intensified remarkably during recent decades.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-31
    Description: Asia's high plateaus are sensitive to climate change and have been experiencing rapid warming over the past few decades. We found 99 new lakes and extensive lake expansion on the Tibetan Plateau during the last four decades, 1970–2013, due to increased precipitation and cryospheric contributions to its water balance. This contrasts with disappearing lakes and drastic shrinkage of lake areas on the adjacent Mongolian Plateau: 208 lakes disappeared and 75% of the remaining lakes have shrunk. We detected a statistically significant coincidental timing of lake area changes in both plateaus, associated with the climate regime shift that occurred during 1997/1998. This distinct change in 1997/1998 is thought to be driven by large-scale atmospheric circulation changes in response to climate warming. Our findings reveal that these two adjacent plateaus have been changing in opposite directions in response to climate change. These findings shed light on the complex role of the regional climate and water cycles, and provide useful information for ecological and water resource planning in these fragile landscapes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-03
    Description: [1]  We present a method of directly estimating surface mass anomalies at regional scales using satellite-to-satellite K-band Ranging (KBR) data from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. Geopotential differences based primarily on KBR measurement are derived using a modified energy integral method with an improved method to calibrate accelerometer measurements. Surface mass anomalies are computed based on a downward continuation process, with optimal regularization parameters estimated using the L-curve criterion method. We derive the covariance functions in both space- and space-time domains and use them as light constraints in the regional gravity estimation process in the Amazon basin study region. The space-time covariance function has a time-correlation distance of 1.27 months, which is evident that observations between neighboring months are correlated and the correlation should be taken into account. However, most of the current GRACE solutions did not consider such temporal correlations. In our study, the artifact in the regional gravity solution is mitigated by using the covariance functions. The averaged commission errors are estimated to be only 6.86% and 5.85% for the solutions based on the space-covariance function (SCF) and the space-time covariance function (STCF), respectively. Our regional gravity solution in the Amazon basin study region, which requires no further post-processing, shows enhanced regional gravity signatures, reduced gravity artifacts, and the gravity solution agrees with NASA/GSFC's GRACE MASCON solution to about 1 cm RMS in terms of water thickness change over the Amazon basin study region. The regional gravity solution also retains the maximum signal energy while suppressing the short wavelength errors.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-27
    Description: The contribution of subsidence to relative sea-level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in-situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the 20 th century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-30
    Description: Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1006 km 3 , 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in non-mountain areas, we estimate peak North America SWE of 1684 km 3 , 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain ~60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...